Spaces:
Running
Running
File size: 5,563 Bytes
c993212 4295765 c993212 b4c8f45 c993212 7a63442 c993212 0830a2a c993212 479b1ed c993212 0830a2a c993212 0830a2a c993212 3210cac c993212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import base64
import numpy as np
from PIL import Image, ImageChops, ImageDraw
import io
import requests
import replicate
import gradio as gr
from dotenv import load_dotenv, find_dotenv
# Locate the .env file
dotenv_path = find_dotenv()
load_dotenv(dotenv_path)
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')
def sdxl_api(weighted_prompt, weight_amt, prompt, starter_img, prompt_strength):
input = {
"seed": 1235,
"image": starter_img,
"prompt": "high quality render of (" + weighted_prompt + ")" + str(weight_amt) + " " + prompt + ", minimalist and simple on a white background",
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch, logo, buttons, markings, text, wires, complex, screws, nails, construction, partial, multiple, pattern, words",
"prompt_weighting": True,
#"width": 768,
#"height": 768,
"apply_watermark" : False,
"scheduler":"K_EULER_ANCESTRAL",
"prompt_strength":prompt_strength
}
output = replicate.run(
"batouresearch/sdxl-weighting-prompts:66175a2993706e1721076d5c7f92f0c81ec6d065ec20717527f05dd8528a1fc7",
input=input
)
response = requests.get(output[0])
return Image.open(io.BytesIO(response.content))
def img2imgstarter(prompt):
input = {
"prompt": "high quality 3D render of a simple " + prompt + ", front-view, minimalist and simple mockup on a white background",
"output_format": "jpg",
"output_quality": 75,
"steps": 14
}
try:
output = replicate.run(
"stability-ai/stable-diffusion-3",
input=input
)
except Exception as e:
raise gr.Error(f"Error: {e}")
try:
image_url = output[0]
response = requests.get(image_url)
img1 = Image.open(io.BytesIO(response.content))
# Save the starter image to a bytes buffer
buffered = io.BytesIO()
img1.save(buffered, format="JPEG")
# Encode the starter image to base64
return "data:image/jpeg;base64," + base64.b64encode(buffered.getvalue()).decode('utf-8')
except Exception as e:
raise gr.Error(f"Image download failed: {e}")
def main(text1, text2, prompt, dropdown_value, image_input):
if dropdown_value=="prompt+image":
starter_image_pil = Image.fromarray(image_input.astype('uint8'))
# Resize the starter image if either dimension is larger than 768 pixels
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
# Calculate the new size while maintaining the aspect ratio
if starter_image_pil.size[0] > starter_image_pil.size[1]:
# Width is larger than height
new_width = 768
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1])
else:
# Height is larger than width
new_height = 768
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0])
# Resize the image
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
# Save the starter image to a bytes buffer
buffered = io.BytesIO()
starter_image_pil.save(buffered, format="JPEG")
# Encode the starter image to base64
starter_img = "data:image/jpeg;base64," + base64.b64encode(buffered.getvalue()).decode('utf-8')
prompt_strength=.82
else:
starter_img = img2imgstarter(prompt)
prompt_strength = .95
outputs = [text1]
output_amts = [2.25, 1.8, 1.5]
for amt in output_amts:
outputs.append(sdxl_api(text1, amt, prompt, starter_img, prompt_strength))
outputs.append(sdxl_api("", 1, prompt, starter_img, .5))
output_amts.reverse()
for amt in output_amts:
outputs.append(sdxl_api(text2, amt, prompt, starter_img, prompt_strength))
outputs.append(text2)
return outputs
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
text1 = gr.Textbox(value="organic-shaped", label="Word 1 (Left)")
text2 = gr.Textbox(value="geometric-shaped", label="Word 2 (Right)")
with gr.Column(scale=1):
dropdown = gr.Dropdown(choices=["prompt", "prompt+image"], value="prompt", label="Input Type")
prompt = gr.Textbox(label="Prompt")
image_input = gr.Image(label="Image Input", visible=False)
submit_btn = gr.Button("Submit")
with gr.Row():
output1 = gr.Textbox(label="Word 1")
output2 = gr.Image(label="Output 1")
output3 = gr.Image(label="Output 2")
with gr.Row():
output4 = gr.Image(label="Output 3")
output5 = gr.Image(label="Output 4")
output6 = gr.Image(label="Output 5")
with gr.Row():
output7 = gr.Image(label="Output 6")
output8 = gr.Image(label="Output 7")
output9 = gr.Textbox(label="Word 2")
submit_btn.click(main, inputs=[text1, text2, prompt, dropdown, image_input], outputs=[output1, output2, output3, output4, output5, output6, output7, output8, output9])
def update_visibility(selected):
return gr.update(visible=(selected in ["prompt", "prompt+image"])), gr.update(visible=(selected in ["prompt+image"]))
dropdown.change(fn=update_visibility, inputs=dropdown, outputs=[prompt, image_input])
demo.launch(share=False) |