Spaces:
Runtime error
Runtime error
import os | |
import base64 | |
import numpy as np | |
from PIL import Image, ImageChops, ImageDraw | |
import io | |
import requests | |
import replicate | |
import gradio as gr | |
from dotenv import load_dotenv, find_dotenv | |
# Locate the .env file | |
dotenv_path = find_dotenv() | |
load_dotenv(dotenv_path) | |
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN') | |
def generate_sd3_image(prompt): | |
prompt = "texture sample zoomed in of " + prompt + ", perfect, seamless pattern" | |
output = replicate.run( | |
"stability-ai/stable-diffusion-3", | |
input={ | |
"cfg": 3.5, | |
"steps": 28, | |
"prompt": prompt, | |
"aspect_ratio": "1:1", | |
"output_format": "jpg", | |
"output_quality": 80, | |
"negative_prompt": "", | |
"prompt_strength": 0.85 | |
} | |
) | |
response = requests.get(output[0]) | |
return Image.open(io.BytesIO(response.content)) | |
def generate_pattern(image, prompt): | |
if image is not None: | |
# Convert the numpy array to a PIL image | |
starter_image_pil = Image.fromarray(image.astype('uint8')) | |
# Resize the starter image if either dimension is larger than 768 pixels | |
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768: | |
# Calculate the new size while maintaining the aspect ratio | |
if starter_image_pil.size[0] > starter_image_pil.size[1]: | |
# Width is larger than height | |
new_width = 768 | |
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1]) | |
else: | |
# Height is larger than width | |
new_height = 768 | |
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0]) | |
# Resize the image | |
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS) | |
else: | |
starter_image_pil = generate_sd3_image(prompt) | |
# Move the image horizontally and vertically by 50% | |
width, height = starter_image_pil.size | |
horizontal_shift = width // 2 | |
vertical_shift = height // 2 | |
transformed_image_pil = ImageChops.offset(starter_image_pil, horizontal_shift, vertical_shift) | |
# Create a new image with black background and white cross | |
cross_image_pil = Image.new('RGB', (width, height), 'black') | |
draw = ImageDraw.Draw(cross_image_pil) | |
line_width = 75 | |
# Draw vertical line | |
draw.rectangle([(width // 2 - line_width // 2, 0), (width // 2 + line_width // 2, height)], fill='white') | |
# Draw horizontal line | |
draw.rectangle([(0, height // 2 - line_width // 2), (width, height // 2 + line_width // 2)], fill='white') | |
buffered = io.BytesIO() | |
transformed_image_pil.save(buffered, format="JPEG") | |
image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
buffered = io.BytesIO() | |
cross_image_pil.save(buffered, format="JPEG") | |
cross_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') | |
input = { | |
"prompt": prompt + " smooth background", | |
"negative_prompt": "worst quality, low quality, cartoons, sketch, ugly, lowres", | |
"image": "data:image/jpeg;base64," + image_base64, | |
"mask": "data:image/jpeg;base64," + cross_base64, | |
"num_inference_steps": 25, | |
"num_outputs": 3, | |
} | |
output = replicate.run( | |
"lucataco/sdxl-inpainting:a5b13068cc81a89a4fbeefeccc774869fcb34df4dbc92c1555e0f2771d49dde7", | |
input=input | |
) | |
images = [] | |
for i in range(min(len(output), 3)): | |
image_url = output[i] | |
response = requests.get(image_url) | |
images.append(Image.open(io.BytesIO(response.content))) | |
# Add empty images if fewer than 3 were returned | |
while len(images) < 3: | |
images.append(Image.new('RGB', (width, height), 'gray')) | |
return images | |
demo = gr.Interface(fn=generate_pattern, inputs=["image", "text"], outputs=["image", "image", "image"]) | |
demo.launch(share=False) |