Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,88 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
ui.layout_sidebar(
|
23 |
-
ui.
|
24 |
-
|
25 |
-
ui.input_selectize(
|
26 |
-
"xvar",
|
27 |
-
"X variable",
|
28 |
-
numeric_cols,
|
29 |
-
selected="Bill Length (mm)",
|
30 |
-
),
|
31 |
-
ui.input_selectize(
|
32 |
-
"yvar",
|
33 |
-
"Y variable",
|
34 |
-
numeric_cols,
|
35 |
-
selected="Bill Depth (mm)",
|
36 |
-
),
|
37 |
-
ui.input_checkbox_group(
|
38 |
-
"species", "Filter by species", species, selected=species
|
39 |
-
),
|
40 |
-
ui.hr(),
|
41 |
-
ui.input_switch("by_species", "Show species", value=True),
|
42 |
-
ui.input_switch("show_margins", "Show marginal plots", value=True),
|
43 |
-
),
|
44 |
-
ui.output_ui("value_boxes"),
|
45 |
-
ui.output_plot("scatter", fill=True),
|
46 |
-
ui.help_text(
|
47 |
-
"Artwork by ",
|
48 |
-
ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
|
49 |
-
class_="text-end",
|
50 |
),
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
|
54 |
-
|
55 |
-
def server(input: Inputs, output: Outputs, session: Session):
|
56 |
-
@reactive.Calc
|
57 |
-
def filtered_df() -> pd.DataFrame:
|
58 |
-
"""Returns a Pandas data frame that includes only the desired rows"""
|
59 |
-
|
60 |
-
# This calculation "req"uires that at least one species is selected
|
61 |
-
req(len(input.species()) > 0)
|
62 |
-
|
63 |
-
# Filter the rows so we only include the desired species
|
64 |
-
return df[df["Species"].isin(input.species())]
|
65 |
-
|
66 |
@output
|
67 |
-
@render.
|
68 |
-
def
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
hue_order=species,
|
81 |
-
legend=False,
|
82 |
-
)
|
83 |
|
84 |
@output
|
85 |
-
@render.
|
86 |
-
def
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
style=f"background-color: {bgcol};",
|
102 |
-
)
|
103 |
-
|
104 |
-
if not input.by_species():
|
105 |
-
return penguin_value_box(
|
106 |
-
"Penguins",
|
107 |
-
len(df.index),
|
108 |
-
bg_palette["default"],
|
109 |
-
# Artwork by @allison_horst
|
110 |
-
showcase_img="penguins.png",
|
111 |
-
)
|
112 |
-
|
113 |
-
value_boxes = [
|
114 |
-
penguin_value_box(
|
115 |
-
name,
|
116 |
-
len(df[df["Species"] == name]),
|
117 |
-
bg_palette[name],
|
118 |
-
# Artwork by @allison_horst
|
119 |
-
showcase_img=f"{name}.png",
|
120 |
-
)
|
121 |
-
for name in species
|
122 |
-
# Only include boxes for _selected_ species
|
123 |
-
if name in input.species()
|
124 |
-
]
|
125 |
-
|
126 |
-
return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
|
127 |
-
|
128 |
-
|
129 |
-
# "darkorange", "purple", "cyan4"
|
130 |
-
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
|
131 |
-
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
|
132 |
-
|
133 |
-
palette: Dict[str, Tuple[float, float, float]] = {
|
134 |
-
"Adelie": colors[0],
|
135 |
-
"Chinstrap": colors[1],
|
136 |
-
"Gentoo": colors[2],
|
137 |
-
"default": sns.color_palette()[0], # type: ignore
|
138 |
-
}
|
139 |
-
|
140 |
-
bg_palette = {}
|
141 |
-
# Use `sns.set_style("whitegrid")` to help find approx alpha value
|
142 |
-
for name, col in palette.items():
|
143 |
-
# Adjusted n_colors until `axe` accessibility did not complain about color contrast
|
144 |
-
bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
|
145 |
-
|
146 |
-
|
147 |
-
app = App(
|
148 |
-
app_ui,
|
149 |
-
server,
|
150 |
-
static_assets=str(www_dir),
|
151 |
-
)
|
|
|
1 |
+
from shiny import App, ui, render, reactive
|
2 |
+
|
3 |
+
import os
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import SamModel, SamProcessor
|
8 |
+
|
9 |
+
# Load the processor and the finetuned model
|
10 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
11 |
+
model_path = "SAM/mito_model_checkpoint.pth"
|
12 |
+
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
13 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
model.to(device)
|
16 |
+
model.eval()
|
17 |
+
|
18 |
+
def process_image(image_path):
|
19 |
+
# Open and prepare the image
|
20 |
+
image = Image.open(image_path).convert("RGB") # Ensure RGB format for consistency
|
21 |
+
image_np = np.array(image)
|
22 |
+
|
23 |
+
# Prepare the image for the model using the processor
|
24 |
+
inputs = processor(images=image_np, return_tensors="pt")
|
25 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
26 |
+
|
27 |
+
# Perform inference
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(**inputs, multimask_output=False)
|
30 |
+
|
31 |
+
# Process the prediction to create a binary mask
|
32 |
+
pred_masks = torch.sigmoid(outputs.pred_masks).cpu().numpy()
|
33 |
+
segmented_image = (pred_masks[0] > .99).astype(np.uint8) * 255
|
34 |
+
print(segmented_image)
|
35 |
+
# Save the segmented image
|
36 |
+
root, ext = os.path.splitext(image_path)
|
37 |
+
output_path = f"{root}_segmented.png"
|
38 |
+
segmented_image_pil = Image.fromarray(segmented_image.squeeze(), mode="L")
|
39 |
+
segmented_image_pil.save(output_path)
|
40 |
+
|
41 |
+
return output_path
|
42 |
+
|
43 |
+
# Define the Shiny app UI layout
|
44 |
+
app_ui = ui.page_fluid(
|
45 |
ui.layout_sidebar(
|
46 |
+
ui.panel_sidebar(
|
47 |
+
ui.input_file("image_upload", "Upload Satellite Image", accept=".jpg,.jpeg,.png,.tif")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
),
|
49 |
+
ui.panel_main(
|
50 |
+
ui.output_image("uploaded_image", "Uploaded Image"),
|
51 |
+
ui.output_image("segmented_image", "Segmented Image")
|
52 |
+
)
|
53 |
+
)
|
54 |
)
|
55 |
|
56 |
+
def server(input, output, session):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
@output
|
58 |
+
@render.image
|
59 |
+
def uploaded_image():
|
60 |
+
file_info = input.image_upload()
|
61 |
+
if file_info:
|
62 |
+
if isinstance(file_info, list):
|
63 |
+
file_path = file_info[0].get('datapath')
|
64 |
+
if file_path:
|
65 |
+
return {'src': file_path}
|
66 |
+
else:
|
67 |
+
file_path = file_info.get('datapath')
|
68 |
+
if file_path:
|
69 |
+
return {'src': file_path}
|
70 |
+
return None
|
|
|
|
|
|
|
71 |
|
72 |
@output
|
73 |
+
@render.image
|
74 |
+
def segmented_image():
|
75 |
+
file_info = input.image_upload()
|
76 |
+
if file_info:
|
77 |
+
try:
|
78 |
+
file_path = file_info[0].get('datapath') if isinstance(file_info, list) else file_info.get('datapath')
|
79 |
+
if file_path:
|
80 |
+
segmented_path = process_image(file_path)
|
81 |
+
return {'src': segmented_path}
|
82 |
+
except Exception as e:
|
83 |
+
print(f"Error processing image: {e}")
|
84 |
+
return None
|
85 |
+
|
86 |
+
# Create and run the Shiny app
|
87 |
+
app = App(app_ui, server)
|
88 |
+
app.run(port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|