LemonPit commited on
Commit
90baaac
1 Parent(s): 4e4d65d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -144
app.py CHANGED
@@ -1,151 +1,88 @@
1
- from pathlib import Path
2
- from typing import List, Dict, Tuple
3
- import matplotlib.colors as mpl_colors
4
-
5
- import pandas as pd
6
- import seaborn as sns
7
- import shinyswatch
8
-
9
- from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
10
-
11
- sns.set_theme()
12
-
13
- www_dir = Path(__file__).parent.resolve() / "www"
14
-
15
- df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
16
- numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
17
- species: List[str] = df["Species"].unique().tolist()
18
- species.sort()
19
-
20
- app_ui = ui.page_fillable(
21
- shinyswatch.theme.minty(),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ui.layout_sidebar(
23
- ui.sidebar(
24
- # Artwork by @allison_horst
25
- ui.input_selectize(
26
- "xvar",
27
- "X variable",
28
- numeric_cols,
29
- selected="Bill Length (mm)",
30
- ),
31
- ui.input_selectize(
32
- "yvar",
33
- "Y variable",
34
- numeric_cols,
35
- selected="Bill Depth (mm)",
36
- ),
37
- ui.input_checkbox_group(
38
- "species", "Filter by species", species, selected=species
39
- ),
40
- ui.hr(),
41
- ui.input_switch("by_species", "Show species", value=True),
42
- ui.input_switch("show_margins", "Show marginal plots", value=True),
43
- ),
44
- ui.output_ui("value_boxes"),
45
- ui.output_plot("scatter", fill=True),
46
- ui.help_text(
47
- "Artwork by ",
48
- ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
49
- class_="text-end",
50
  ),
51
- ),
 
 
 
 
52
  )
53
 
54
-
55
- def server(input: Inputs, output: Outputs, session: Session):
56
- @reactive.Calc
57
- def filtered_df() -> pd.DataFrame:
58
- """Returns a Pandas data frame that includes only the desired rows"""
59
-
60
- # This calculation "req"uires that at least one species is selected
61
- req(len(input.species()) > 0)
62
-
63
- # Filter the rows so we only include the desired species
64
- return df[df["Species"].isin(input.species())]
65
-
66
  @output
67
- @render.plot
68
- def scatter():
69
- """Generates a plot for Shiny to display to the user"""
70
-
71
- # The plotting function to use depends on whether margins are desired
72
- plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
73
-
74
- plotfunc(
75
- data=filtered_df(),
76
- x=input.xvar(),
77
- y=input.yvar(),
78
- palette=palette,
79
- hue="Species" if input.by_species() else None,
80
- hue_order=species,
81
- legend=False,
82
- )
83
 
84
  @output
85
- @render.ui
86
- def value_boxes():
87
- df = filtered_df()
88
-
89
- def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
90
- return ui.value_box(
91
- title,
92
- count,
93
- {"class_": "pt-1 pb-0"},
94
- showcase=ui.fill.as_fill_item(
95
- ui.tags.img(
96
- {"style": "object-fit:contain;"},
97
- src=showcase_img,
98
- )
99
- ),
100
- theme_color=None,
101
- style=f"background-color: {bgcol};",
102
- )
103
-
104
- if not input.by_species():
105
- return penguin_value_box(
106
- "Penguins",
107
- len(df.index),
108
- bg_palette["default"],
109
- # Artwork by @allison_horst
110
- showcase_img="penguins.png",
111
- )
112
-
113
- value_boxes = [
114
- penguin_value_box(
115
- name,
116
- len(df[df["Species"] == name]),
117
- bg_palette[name],
118
- # Artwork by @allison_horst
119
- showcase_img=f"{name}.png",
120
- )
121
- for name in species
122
- # Only include boxes for _selected_ species
123
- if name in input.species()
124
- ]
125
-
126
- return ui.layout_column_wrap(*value_boxes, width = 1 / len(value_boxes))
127
-
128
-
129
- # "darkorange", "purple", "cyan4"
130
- colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
131
- colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
132
-
133
- palette: Dict[str, Tuple[float, float, float]] = {
134
- "Adelie": colors[0],
135
- "Chinstrap": colors[1],
136
- "Gentoo": colors[2],
137
- "default": sns.color_palette()[0], # type: ignore
138
- }
139
-
140
- bg_palette = {}
141
- # Use `sns.set_style("whitegrid")` to help find approx alpha value
142
- for name, col in palette.items():
143
- # Adjusted n_colors until `axe` accessibility did not complain about color contrast
144
- bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
145
-
146
-
147
- app = App(
148
- app_ui,
149
- server,
150
- static_assets=str(www_dir),
151
- )
 
1
+ from shiny import App, ui, render, reactive
2
+
3
+ import os
4
+ import numpy as np
5
+ import torch
6
+ from PIL import Image
7
+ from transformers import SamModel, SamProcessor
8
+
9
+ # Load the processor and the finetuned model
10
+ processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
11
+ model_path = "SAM/mito_model_checkpoint.pth"
12
+ model = SamModel.from_pretrained("facebook/sam-vit-base")
13
+ model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+ model.to(device)
16
+ model.eval()
17
+
18
+ def process_image(image_path):
19
+ # Open and prepare the image
20
+ image = Image.open(image_path).convert("RGB") # Ensure RGB format for consistency
21
+ image_np = np.array(image)
22
+
23
+ # Prepare the image for the model using the processor
24
+ inputs = processor(images=image_np, return_tensors="pt")
25
+ inputs = {k: v.to(device) for k, v in inputs.items()}
26
+
27
+ # Perform inference
28
+ with torch.no_grad():
29
+ outputs = model(**inputs, multimask_output=False)
30
+
31
+ # Process the prediction to create a binary mask
32
+ pred_masks = torch.sigmoid(outputs.pred_masks).cpu().numpy()
33
+ segmented_image = (pred_masks[0] > .99).astype(np.uint8) * 255
34
+ print(segmented_image)
35
+ # Save the segmented image
36
+ root, ext = os.path.splitext(image_path)
37
+ output_path = f"{root}_segmented.png"
38
+ segmented_image_pil = Image.fromarray(segmented_image.squeeze(), mode="L")
39
+ segmented_image_pil.save(output_path)
40
+
41
+ return output_path
42
+
43
+ # Define the Shiny app UI layout
44
+ app_ui = ui.page_fluid(
45
  ui.layout_sidebar(
46
+ ui.panel_sidebar(
47
+ ui.input_file("image_upload", "Upload Satellite Image", accept=".jpg,.jpeg,.png,.tif")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ),
49
+ ui.panel_main(
50
+ ui.output_image("uploaded_image", "Uploaded Image"),
51
+ ui.output_image("segmented_image", "Segmented Image")
52
+ )
53
+ )
54
  )
55
 
56
+ def server(input, output, session):
 
 
 
 
 
 
 
 
 
 
 
57
  @output
58
+ @render.image
59
+ def uploaded_image():
60
+ file_info = input.image_upload()
61
+ if file_info:
62
+ if isinstance(file_info, list):
63
+ file_path = file_info[0].get('datapath')
64
+ if file_path:
65
+ return {'src': file_path}
66
+ else:
67
+ file_path = file_info.get('datapath')
68
+ if file_path:
69
+ return {'src': file_path}
70
+ return None
 
 
 
71
 
72
  @output
73
+ @render.image
74
+ def segmented_image():
75
+ file_info = input.image_upload()
76
+ if file_info:
77
+ try:
78
+ file_path = file_info[0].get('datapath') if isinstance(file_info, list) else file_info.get('datapath')
79
+ if file_path:
80
+ segmented_path = process_image(file_path)
81
+ return {'src': segmented_path}
82
+ except Exception as e:
83
+ print(f"Error processing image: {e}")
84
+ return None
85
+
86
+ # Create and run the Shiny app
87
+ app = App(app_ui, server)
88
+ app.run(port=8000)