from huggingface_hub import InferenceClient import gradio as gr # Initialize the inference client with the Mixtral model client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def translate_text(text, target_language): # Format the prompt to include the translation instruction prompt = f"Translate the following text to {target_language}:\n{text}" # Call the Mixtral model for translation response = client(text_generation=prompt, parameters={"max_new_tokens": 100}, options={"wait_for_model": True}) # The Mixtral model response includes the translated text in its output translated_text = response[0]['generated_text'] # Clean up the response to extract only the translated part # This step might need adjustment based on the model's output format translated_text = translated_text.replace(prompt, '').strip() return translated_text # Define the languages you want to support in your app languages = [ "French", "Spanish", "German", "Italian", "Portuguese", # Add more languages as needed ] # Create the Gradio interface iface = gr.Interface( fn=translate_text, inputs=[ gr.Textbox(label="Text to Translate", placeholder="Enter text here..."), gr.Dropdown(label="Target Language", choices=languages) ], outputs=gr.Textbox(label="Translated Text"), title="Simple Translator with Mixtral", description="Translate text to various languages using the Mixtral model from Hugging Face." ) # Launch the interface iface.launch()