Lenylvt commited on
Commit
2e93abd
1 Parent(s): 64736ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -13
app.py CHANGED
@@ -6,13 +6,6 @@ import logging
6
  logging.basicConfig()
7
  logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
8
 
9
- # Initialize the Whisper model with your desired configuration
10
- model_size = "large-v3" # Choose the model size
11
- device = "cpu" # GPU : cuda CPU : cpu
12
- compute_type = "int8" # GPU : float16 or int8 - CPU : int8
13
-
14
- model = WhisperModel(model_size, device=device, compute_type=compute_type)
15
-
16
  def format_timestamp(seconds):
17
  """Convert seconds to HH:MM:SS.mmm format."""
18
  hours = int(seconds // 3600)
@@ -20,7 +13,13 @@ def format_timestamp(seconds):
20
  seconds_remainder = seconds % 60
21
  return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}"
22
 
23
- def transcribe(audio_file):
 
 
 
 
 
 
24
  # Transcribe the audio file
25
  segments, _ = model.transcribe(audio_file)
26
 
@@ -32,14 +31,14 @@ def transcribe(audio_file):
32
 
33
  return "\n".join(transcription_with_timestamps)
34
 
35
- # Define the Gradio interface
36
  iface = gr.Interface(fn=transcribe,
37
- inputs=gr.Audio(sources="upload", type="filepath", label="Upload Audio"),
 
38
  outputs="text",
39
- title="Whisper Transcription with Enhanced Timestamps",
40
- description="Upload an audio file to get transcription with enhanced timestamps in HH:MM:SS.mmm format using Faster Whisper.")
41
 
42
  # Launch the app
43
  if __name__ == "__main__":
44
  iface.launch()
45
-
 
6
  logging.basicConfig()
7
  logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
8
 
 
 
 
 
 
 
 
9
  def format_timestamp(seconds):
10
  """Convert seconds to HH:MM:SS.mmm format."""
11
  hours = int(seconds // 3600)
 
13
  seconds_remainder = seconds % 60
14
  return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}"
15
 
16
+ def transcribe(audio_file, model_size):
17
+ # Initialize the Whisper model based on the selected model size
18
+ device = "cpu" # GPU : cuda CPU : cpu
19
+ compute_type = "int8" # GPU : float16 or int8 - CPU : int8
20
+
21
+ model = WhisperModel(model_size, device=device, compute_type=compute_type)
22
+
23
  # Transcribe the audio file
24
  segments, _ = model.transcribe(audio_file)
25
 
 
31
 
32
  return "\n".join(transcription_with_timestamps)
33
 
34
+ # Define the Gradio interface with a dropdown for model selection
35
  iface = gr.Interface(fn=transcribe,
36
+ inputs=[gr.Audio(sources="upload", type="filepath", label="Upload Audio"),
37
+ gr.Dropdown(choices=["base", "small", "medium", "large", "large-v2", "large-v3"], label="Model Size")],
38
  outputs="text",
39
+ title="Whisper API",
40
+ description="For web use please visit [this space](https://huggingface.co/spaces/Lenylvt/Whisper)")
41
 
42
  # Launch the app
43
  if __name__ == "__main__":
44
  iface.launch()