comparator / app.py
albertvillanova's picture
Add Results tab
05c90f4 verified
raw
history blame
5 kB
import json
import gradio as gr
import pandas as pd
from huggingface_hub import HfFileSystem
RESULTS_DATASET_ID = "datasets/open-llm-leaderboard/results"
EXCLUDED_KEYS = {
"pretty_env_info",
"chat_template",
"group_subtasks",
}
EXCLUDED_RESULTS_KEYS = {
"leaderboard",
}
EXCLUDED_RESULTS_LEADERBOARDS_KEYS = {
"leaderboard",
}
fs = HfFileSystem()
def fetch_result_paths():
paths = fs.glob(f"{RESULTS_DATASET_ID}/**/**/*.json")
return paths
def filter_latest_result_path_per_model(paths):
from collections import defaultdict
d = defaultdict(list)
for path in paths:
model_id, _ = path[len(RESULTS_DATASET_ID) +1:].rsplit("/", 1)
d[model_id].append(path)
return {model_id: max(paths) for model_id, paths in d.items()}
def get_result_path_from_model(model_id, result_path_per_model):
return result_path_per_model[model_id]
def load_data(result_path) -> pd.DataFrame:
with fs.open(result_path, "r") as f:
data = json.load(f)
return data
# model_name = data.get("model_name", "Model")
# df = pd.json_normalize([data])
# return df.iloc[0].rename_axis("Parameters").rename(model_name).to_frame() # .reset_index()
def load_result(model_id):
result_path = get_result_path_from_model(model_id, latest_result_path_per_model)
data = load_data(result_path)
model_name = data.get("model_name", "Model")
result = [
to_vertical(to_dataframe_all(data), model_name),
to_vertical(to_dataframe_results(data), model_name)
]
return result
def to_dataframe(data):
return pd.DataFrame.from_records([data])
def to_vertical(df, model_name):
return df.iloc[0].rename_axis("Parameters").rename(model_name).to_frame() # .reset_index()
def to_dataframe_all(data):
return pd.json_normalize([{key: value for key, value in data.items() if key not in EXCLUDED_KEYS}])
def to_dataframe_results(data):
dfs = {}
for key in data["results"]:
if key not in EXCLUDED_RESULTS_KEYS: # key.startswith("leaderboard_"):
name = key[len("leaderboard_"):]
df = to_dataframe(
{
key: value
for key, value in data["results"][key].items()
if key not in EXCLUDED_RESULTS_LEADERBOARDS_KEYS
}
)
# df.drop(columns=["alias"])
# df.columns = pd.MultiIndex.from_product([[name], df.columns])
df.columns = [f"{name}.{column}" for column in df.columns]
dfs[name] = df
return pd.concat(dfs.values(), axis="columns")
def concat_result_1(result_1, results):
return pd.concat([result_1, results.iloc[:, [0, 2]].set_index("Parameters")], axis=1).reset_index()
def concat_result_2(result_2, results):
return pd.concat([results.iloc[:, [0, 1]].set_index("Parameters"), result_2], axis=1).reset_index()
def render_result_1(model_id, *results):
result = load_result(model_id)
return [concat_result_1(*result_args) for result_args in zip(result, results)]
def render_result_2(model_id, *results):
result = load_result(model_id)
return [concat_result_2(*result_args) for result_args in zip(result, results)]
# if __name__ == "__main__":
latest_result_path_per_model = filter_latest_result_path_per_model(fetch_result_paths())
with gr.Blocks(fill_height=True) as demo:
gr.HTML("<h1 style='text-align: center;'>Compare Results of the 🤗 Open LLM Leaderboard</h1>")
gr.HTML("<h3 style='text-align: center;'>Select 2 results to load and compare</h3>")
with gr.Row():
with gr.Column():
model_id_1 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results")
load_btn_1 = gr.Button("Load")
with gr.Column():
model_id_2 = gr.Dropdown(choices=list(latest_result_path_per_model.keys()), label="Results")
load_btn_2 = gr.Button("Load")
with gr.Row():
with gr.Tab("All"):
compared_results_all = gr.Dataframe(
label="Results",
headers=["Parameters", "Model-1", "Model-2"],
interactive=False,
column_widths=["30%", "30%", "30%"],
wrap=True,
)
with gr.Tab("Results"):
compared_results_results = gr.Dataframe(
label="Results",
headers=["Parameters", "Model-1", "Model-2"],
interactive=False,
column_widths=["30%", "30%", "30%"],
wrap=True,
)
load_btn_1.click(
fn=render_result_1,
inputs=[model_id_1, compared_results_all, compared_results_results],
outputs=[compared_results_all, compared_results_results],
)
load_btn_2.click(
fn=render_result_2,
inputs=[model_id_2, compared_results_all, compared_results_results],
outputs=[compared_results_all, compared_results_results],
)
demo.launch()