Spaces:
Runtime error
Runtime error
from llama_cpp import * | |
from ctypes import POINTER, c_size_t | |
from llama_cpp._internals import ( | |
_LlamaModel, # type: ignore | |
_LlamaContext, # type: ignore | |
_LlamaBatch, # type: ignore | |
_LlamaTokenDataArray, # type: ignore | |
) | |
from KMP_list import kmp_search, compute_lps_array | |
from Turbo_Colormap import map_value_to_color, NOCOLOR, LEGEND, BACK_WHITE | |
class LLMGenerate: | |
def __init__( | |
self, | |
model, | |
n_keep, | |
n_discard: int = 256, | |
im_start=None, | |
top_k: int = 40, | |
top_p: float = 0.95, | |
min_p: float = 0.05, | |
typical_p: float = 1.0, | |
temp: float = 0.80, | |
repeat_penalty: float = 1.1, | |
repeat_last_n: int = 64, | |
frequency_penalty: float = 0.0, | |
presence_penalty: float = 0.0, | |
tfs_z: float = 1.0, | |
mirostat_mode: int = 0, | |
mirostat_tau: float = 5.0, | |
mirostat_eta: float = 0.1 | |
): | |
def _eval_t(tokens): | |
return model.eval_t( | |
tokens=tokens, | |
n_keep=n_keep, | |
n_discard=n_discard, | |
im_start=im_start | |
) | |
def _sample_t(logits_processor): | |
return model.sample_t( | |
top_k=top_k, | |
top_p=top_p, | |
min_p=min_p, | |
typical_p=typical_p, | |
temp=temp, | |
repeat_penalty=repeat_penalty, | |
repeat_last_n=repeat_last_n, | |
frequency_penalty=frequency_penalty, | |
presence_penalty=presence_penalty, | |
tfs_z=tfs_z, | |
mirostat_mode=mirostat_mode, | |
mirostat_tau=mirostat_tau, | |
mirostat_eta=mirostat_eta, | |
logits_processor=logits_processor | |
) | |
self._eval_t = _eval_t | |
self._sample_t = _sample_t | |
self.str_detokenize = model.str_detokenize | |
self.venv_pop_token = model.venv_pop_token | |
# ========== 保存输出 ========== | |
self.t_bot = [] | |
self.completion_tokens = [] | |
self.history = '' | |
self.token = None | |
def eval_t(self, tokens): | |
# ========== 避免不完整的utf-8编码 ========== | |
self.completion_tokens.extend(tokens) | |
all_text = self.str_detokenize(self.completion_tokens) | |
if all_text: | |
self.t_bot.extend(self.completion_tokens) | |
self.history += all_text | |
self.completion_tokens = [] | |
return self._eval_t(tokens) | |
def sample_t(self, logits_processor): | |
self.token = self._sample_t(logits_processor) | |
return self.token | |
def detokenize_sample_t(self): | |
self.completion_tokens.append(self.token) | |
all_text = self.str_detokenize(self.completion_tokens) | |
if not all_text: | |
return False | |
self.t_bot.extend(self.completion_tokens) | |
self.history += all_text | |
self.completion_tokens = [] | |
return True | |
def eval_sample_t(self): | |
return self._eval_t([self.token]) | |
def endswith_t(self, token_list): | |
return self.token in token_list | |
def endswith_s(self, start_func, str_list, com_func=str.rstrip): | |
if self.completion_tokens: # 不完整 | |
return False | |
history = self.history | |
t_bot = self.t_bot | |
if start_func(history): | |
history = com_func(history) | |
for x in str_list: | |
if history.endswith(x): | |
n = len(t_bot) | |
for i in range(1, n): # 找出需要弃置的tokens长度 | |
tmp = self.str_detokenize(t_bot[n - i:]) | |
tmp = com_func(tmp) | |
if tmp.endswith(x): | |
if i > 1: # 最后一个token并未进入kv_cache | |
self.venv_pop_token(i - 1) | |
if history.endswith(tmp): | |
self.history = history[:-len(tmp)] # 移除末尾的tmp | |
return True | |
return False | |
kv_cache_type = { | |
'f32': 0, | |
'f16': 1, | |
'q8_0': 8, | |
'q4_0': 2, | |
'q4_1': 3, | |
'iq4_nl': 20, | |
'q5_0': 6, | |
'q5_1': 7 | |
} | |
class StreamingLLM(Llama): | |
__backend_initialized = False | |
def __init__( | |
self, | |
model_path: str, | |
*, | |
# Model Params | |
n_gpu_layers: int = 0, | |
split_mode: int = llama_cpp.LLAMA_SPLIT_MODE_LAYER, | |
main_gpu: int = 0, | |
tensor_split: Optional[List[float]] = None, | |
vocab_only: bool = False, | |
use_mmap: bool = True, | |
use_mlock: bool = False, | |
kv_overrides: Optional[Dict[str, Union[bool, int, float]]] = None, | |
# Context Params | |
seed: int = llama_cpp.LLAMA_DEFAULT_SEED, | |
n_ctx: int = 512, | |
n_batch: int = 512, | |
n_threads: Optional[int] = None, | |
n_threads_batch: Optional[int] = None, | |
rope_scaling_type: Optional[int] = llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, | |
pooling_type: int = llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED, | |
rope_freq_base: float = 0.0, | |
rope_freq_scale: float = 0.0, | |
yarn_ext_factor: float = -1.0, | |
yarn_attn_factor: float = 1.0, | |
yarn_beta_fast: float = 32.0, | |
yarn_beta_slow: float = 1.0, | |
yarn_orig_ctx: int = 0, | |
logits_all: bool = False, | |
embedding: bool = False, | |
offload_kqv: bool = True, | |
# Sampling Params | |
last_n_tokens_size: int = 64, | |
# LoRA Params | |
lora_base: Optional[str] = None, | |
lora_scale: float = 1.0, | |
lora_path: Optional[str] = None, | |
# Backend Params | |
numa: Union[bool, int] = False, | |
# Chat Format Params | |
chat_format: Optional[str] = None, | |
chat_handler: Optional[llama_chat_format.LlamaChatCompletionHandler] = None, | |
# Speculative Decoding | |
draft_model: Optional[LlamaDraftModel] = None, | |
# Tokenizer Override | |
tokenizer: Optional[BaseLlamaTokenizer] = None, | |
# Misc | |
verbose: bool = True, | |
# Extra Params | |
type_k: str = 'f16', | |
type_v: str = 'f16', | |
**kwargs, # type: ignore | |
): | |
"""Load a llama.cpp model from `model_path`. | |
Examples: | |
Basic usage | |
>>> import llama_cpp | |
>>> model = llama_cpp.Llama( | |
... model_path="path/to/model", | |
... ) | |
>>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"]) | |
the lazy dog | |
Loading a chat model | |
>>> import llama_cpp | |
>>> model = llama_cpp.Llama( | |
... model_path="path/to/model", | |
... chat_format="llama-2", | |
... ) | |
>>> print(model.create_chat_completion( | |
... messages=[{ | |
... "role": "user", | |
... "content": "what is the meaning of life?" | |
... }] | |
... )) | |
Args: | |
model_path: Path to the model. | |
n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded. | |
split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options. | |
main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_LAYER: ignored | |
tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split. | |
vocab_only: Only load the vocabulary no weights. | |
use_mmap: Use mmap if possible. | |
use_mlock: Force the system to keep the model in RAM. | |
kv_overrides: Key-value overrides for the model. | |
seed: RNG seed, -1 for random | |
n_ctx: Text context, 0 = from model | |
n_batch: Prompt processing maximum batch size | |
n_threads: Number of threads to use for generation | |
n_threads_batch: Number of threads to use for batch processing | |
rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054 | |
pooling_type: Pooling type, from `enum llama_pooling_type`. | |
rope_freq_base: RoPE base frequency, 0 = from model | |
rope_freq_scale: RoPE frequency scaling factor, 0 = from model | |
yarn_ext_factor: YaRN extrapolation mix factor, negative = from model | |
yarn_attn_factor: YaRN magnitude scaling factor | |
yarn_beta_fast: YaRN low correction dim | |
yarn_beta_slow: YaRN high correction dim | |
yarn_orig_ctx: YaRN original context size | |
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs. | |
embedding: Embedding mode only. | |
offload_kqv: Offload K, Q, V to GPU. | |
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque. | |
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model. | |
lora_path: Path to a LoRA file to apply to the model. | |
numa: numa policy | |
chat_format: String specifying the chat format to use when calling create_chat_completion. | |
chat_handler: Optional chat handler to use when calling create_chat_completion. | |
draft_model: Optional draft model to use for speculative decoding. | |
tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp. | |
verbose: Print verbose output to stderr. | |
Raises: | |
ValueError: If the model path does not exist. | |
Returns: | |
A Llama instance. | |
""" | |
self.verbose = verbose | |
set_verbose(verbose) | |
if not StreamingLLM.__backend_initialized: | |
with suppress_stdout_stderr(disable=verbose): | |
llama_cpp.llama_backend_init() | |
StreamingLLM.__backend_initialized = True | |
if isinstance(numa, bool): | |
self.numa = ( | |
llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTE | |
if numa | |
else llama_cpp.GGML_NUMA_STRATEGY_DISABLED | |
) | |
else: | |
self.numa = numa | |
if self.numa != llama_cpp.GGML_NUMA_STRATEGY_DISABLED: | |
with suppress_stdout_stderr(disable=verbose): | |
llama_cpp.llama_numa_init(self.numa) | |
self.model_path = model_path | |
# Model Params | |
self.model_params = llama_cpp.llama_model_default_params() | |
self.model_params.n_gpu_layers = ( | |
0x7FFFFFFF if n_gpu_layers == -1 else n_gpu_layers | |
) # 0x7FFFFFFF is INT32 max, will be auto set to all layers | |
self.model_params.split_mode = split_mode | |
self.model_params.main_gpu = main_gpu | |
self.tensor_split = tensor_split | |
self._c_tensor_split = None | |
if self.tensor_split is not None: | |
if len(self.tensor_split) > llama_cpp.LLAMA_MAX_DEVICES: | |
raise ValueError( | |
f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}" | |
) | |
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES | |
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES | |
self._c_tensor_split = FloatArray( | |
*tensor_split # type: ignore | |
) # keep a reference to the array so it is not gc'd | |
self.model_params.tensor_split = self._c_tensor_split | |
self.model_params.vocab_only = vocab_only | |
self.model_params.use_mmap = use_mmap if lora_path is None else False | |
self.model_params.use_mlock = use_mlock | |
# kv_overrides is the original python dict | |
self.kv_overrides = kv_overrides | |
if kv_overrides is not None: | |
# _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structs | |
kvo_array_len = len(kv_overrides) + 1 # for sentinel element | |
self._kv_overrides_array = ( | |
llama_cpp.llama_model_kv_override * kvo_array_len | |
)() | |
for i, (k, v) in enumerate(kv_overrides.items()): | |
self._kv_overrides_array[i].key = k.encode("utf-8") | |
if isinstance(v, bool): | |
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOL | |
self._kv_overrides_array[i].value.bool_value = v | |
elif isinstance(v, int): | |
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INT | |
self._kv_overrides_array[i].value.int_value = v | |
elif isinstance(v, float): | |
self._kv_overrides_array[i].tag = llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOAT | |
self._kv_overrides_array[i].value.float_value = v | |
else: | |
raise ValueError(f"Unknown value type for {k}: {v}") | |
self._kv_overrides_array[-1].key = ( | |
b"\0" # ensure sentinel element is zeroed | |
) | |
self.model_params.kv_overrides = self._kv_overrides_array | |
self.n_batch = min(n_ctx, n_batch) # ??? | |
self.n_threads = n_threads or max(multiprocessing.cpu_count() // 2, 1) | |
self.n_threads_batch = n_threads_batch or max( | |
multiprocessing.cpu_count() // 2, 1 | |
) | |
# Context Params | |
self.context_params = llama_cpp.llama_context_default_params() | |
self.context_params.seed = seed | |
self.context_params.n_ctx = n_ctx | |
self.context_params.n_batch = self.n_batch | |
self.context_params.n_threads = self.n_threads | |
self.context_params.n_threads_batch = self.n_threads_batch | |
self.context_params.rope_scaling_type = ( | |
rope_scaling_type | |
if rope_scaling_type is not None | |
else llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED | |
) | |
self.context_params.pooling_type = pooling_type | |
self.context_params.rope_freq_base = ( | |
rope_freq_base if rope_freq_base != 0.0 else 0 | |
) | |
self.context_params.rope_freq_scale = ( | |
rope_freq_scale if rope_freq_scale != 0.0 else 0 | |
) | |
self.context_params.yarn_ext_factor = ( | |
yarn_ext_factor if yarn_ext_factor != 0.0 else 0 | |
) | |
self.context_params.yarn_attn_factor = ( | |
yarn_attn_factor if yarn_attn_factor != 0.0 else 0 | |
) | |
self.context_params.yarn_beta_fast = ( | |
yarn_beta_fast if yarn_beta_fast != 0.0 else 0 | |
) | |
self.context_params.yarn_beta_slow = ( | |
yarn_beta_slow if yarn_beta_slow != 0.0 else 0 | |
) | |
self.context_params.yarn_orig_ctx = yarn_orig_ctx if yarn_orig_ctx != 0 else 0 | |
self.context_params.logits_all = ( | |
logits_all if draft_model is None else True | |
) # Must be set to True for speculative decoding | |
self.context_params.embeddings = embedding # TODO: Rename to embeddings | |
# KV cache quantization | |
print(self.context_params.type_k, self.context_params.type_v) | |
self.context_params.type_k = kv_cache_type[type_k] | |
self.context_params.type_v = kv_cache_type[type_v] | |
self.context_params.offload_kqv = offload_kqv | |
# Sampling Params | |
self.last_n_tokens_size = last_n_tokens_size | |
self.cache: Optional[BaseLlamaCache] = None | |
self.lora_base = lora_base | |
self.lora_scale = lora_scale | |
self.lora_path = lora_path | |
if not os.path.exists(model_path): | |
raise ValueError(f"Model path does not exist: {model_path}") | |
self._model = _LlamaModel( | |
path_model=self.model_path, params=self.model_params, verbose=self.verbose | |
) | |
# Override tokenizer | |
self.tokenizer_ = tokenizer or LlamaTokenizer(self) | |
# Set the default value for the context and correct the batch | |
if n_ctx == 0: | |
n_ctx = self._model.n_ctx_train() | |
self.n_batch = min(n_ctx, n_batch) | |
self.context_params.n_ctx = self._model.n_ctx_train() | |
self.context_params.n_batch = self.n_batch | |
self._ctx = _LlamaContext( | |
model=self._model, | |
params=self.context_params, | |
verbose=self.verbose, | |
) | |
self._batch = _LlamaBatch( | |
n_tokens=self.n_batch, | |
embd=0, | |
n_seq_max=self.context_params.n_ctx, | |
verbose=self.verbose, | |
) | |
if self.lora_path: | |
if self._model.apply_lora_from_file( | |
self.lora_path, | |
self.lora_scale, | |
self.lora_base, | |
self.n_threads, | |
): | |
raise RuntimeError( | |
f"Failed to apply LoRA from lora path: {self.lora_path} to base path: {self.lora_base}" | |
) | |
if self.verbose: | |
print(llama_cpp.llama_print_system_info().decode("utf-8"), file=sys.stderr) | |
self.chat_format = chat_format | |
self.chat_handler = chat_handler | |
self.draft_model = draft_model | |
self._n_vocab = self.n_vocab() | |
self._n_ctx = self.n_ctx() | |
self._token_nl = self.token_nl() | |
self._token_eos = self.token_eos() | |
self._candidates = _LlamaTokenDataArray(n_vocab=self._n_vocab) | |
self.n_tokens = 0 | |
self.input_ids: npt.NDArray[np.intc] = np.ndarray((n_ctx,), dtype=np.intc) | |
self.scores: npt.NDArray[np.single] = np.ndarray( | |
(n_ctx, self._n_vocab), dtype=np.single | |
) | |
self._mirostat_mu = ctypes.c_float( | |
2.0 * 5.0 | |
) # TODO: Move this to sampling context | |
try: | |
self.metadata = self._model.metadata() | |
except Exception as e: | |
self.metadata = {} | |
if self.verbose: | |
print(f"Failed to load metadata: {e}", file=sys.stderr) | |
if self.verbose: | |
print(f"Model metadata: {self.metadata}", file=sys.stderr) | |
if ( | |
self.chat_format is None | |
and self.chat_handler is None | |
and "tokenizer.chat_template" in self.metadata | |
): | |
chat_format = llama_chat_format.guess_chat_format_from_gguf_metadata( | |
self.metadata | |
) | |
if chat_format is not None: | |
self.chat_format = chat_format | |
if self.verbose: | |
print(f"Guessed chat format: {chat_format}", file=sys.stderr) | |
else: | |
template = self.metadata["tokenizer.chat_template"] | |
try: | |
eos_token_id = int(self.metadata["tokenizer.ggml.eos_token_id"]) | |
except: | |
eos_token_id = self.token_eos() | |
try: | |
bos_token_id = int(self.metadata["tokenizer.ggml.bos_token_id"]) | |
except: | |
bos_token_id = self.token_bos() | |
eos_token = self._model.token_get_text(eos_token_id) | |
bos_token = self._model.token_get_text(bos_token_id) | |
if self.verbose: | |
print(f"Using gguf chat template: {template}", file=sys.stderr) | |
print(f"Using chat eos_token: {eos_token}", file=sys.stderr) | |
print(f"Using chat bos_token: {bos_token}", file=sys.stderr) | |
self.chat_handler = llama_chat_format.Jinja2ChatFormatter( | |
template=template, eos_token=eos_token, bos_token=bos_token | |
).to_chat_handler() | |
if self.chat_format is None and self.chat_handler is None: | |
self.chat_format = "llama-2" | |
if self.verbose: | |
print(f"Using fallback chat format: {chat_format}", file=sys.stderr) | |
self._venv_init() | |
def str_detokenize(self, tokens) -> str: | |
return self.detokenize(tokens).decode('utf-8', errors='ignore') | |
def kv_cache_seq_trim(self): | |
self._ctx.kv_cache_seq_rm(-1, self.n_tokens, -1) | |
def _venv_init(self): | |
self.venv = [0] | |
self.venv_idx_map = [] | |
def venv_create(self, name: str): | |
self.venv.append(0) | |
self.venv_idx_map.append(name) | |
return name | |
def venv_disband(self, name_set): | |
if len(self.venv) <= 1: | |
return False | |
name_set = {x for x in name_set if x in self.venv_idx_map} | |
if not name_set: | |
return False | |
while self.venv_idx_map: | |
if self.venv_idx_map[0] in name_set: | |
self.venv_idx_map.pop(0) # 删除 | |
tmp = self.venv.pop(1) # 对应的 venv 移入上一层 | |
self.venv[0] += tmp | |
else: | |
break | |
return True | |
def venv_revision(self, name: str): | |
if len(self.venv) <= 1: | |
return False | |
if name not in self.venv_idx_map: | |
return False | |
_s = 0 | |
while self.venv_idx_map: | |
if self.venv_idx_map[-1] == name: | |
break | |
self.venv_idx_map.pop() # 删除 | |
_s += self.venv.pop() | |
if _s: | |
self.n_tokens -= min(_s, self.n_tokens) | |
self.kv_cache_seq_trim() | |
return True | |
def venv_remove(self, name: str, keep_last=0): | |
if len(self.venv) <= 1: | |
return False | |
if name not in self.venv_idx_map: | |
return False | |
venv_idx = self.venv_idx_map.index(name) + 1 | |
count_name = self.venv_idx_map.count(name) if keep_last else 0 | |
while self.venv_idx_map: | |
if keep_last and count_name <= keep_last: | |
break # 保留最后n个 | |
self.venv_idx_map.pop(venv_idx - 1) # 删除 | |
if venv_idx == len(self.venv) - 1: | |
# 最后一层 | |
self.n_tokens -= min(self.venv.pop(), self.n_tokens) | |
self.kv_cache_seq_trim() | |
break | |
else: | |
# 非最后一层 | |
n_keep = self.n_tokens - sum(self.venv[i] for i in range(venv_idx, len(self.venv))) | |
n_discard = self.venv.pop(venv_idx) | |
self.kv_cache_seq_ltrim(n_keep, n_discard) | |
try: | |
venv_idx = self.venv_idx_map.index(name, venv_idx - 1) + 1 | |
except ValueError: # 没有了 | |
break | |
count_name -= 1 # 计数减一 | |
return True | |
def venv_pop_token(self, n=1): | |
self.n_tokens -= n | |
self.venv[-1] -= n | |
self.kv_cache_seq_trim() | |
def venv_info(self): | |
return str((self.n_tokens, self.venv, self.venv_idx_map)) | |
def venv_viz(self): | |
completion_tokens = [] | |
history = LEGEND + '\n' | |
text_color = NOCOLOR | |
for i in range(self.venv[-1]): | |
idx = self.n_tokens - self.venv[-1] + i | |
token = self._input_ids[idx] | |
if not completion_tokens: # 不完整则是第一个token | |
# ========== 获取对应token的概率 ========== | |
score = self.scores[idx-1: idx, :].ravel() # 第i个token的分数是前i-1个token预测的,所以减一 | |
score = np.exp(score) # 空白则全1,但无所谓了 | |
sum_score = np.sum(score) | |
probabilities = score[token] / sum_score | |
if probabilities < 0.001: | |
text_color = NOCOLOR | |
else: | |
if text_color is NOCOLOR: | |
text_color = BACK_WHITE + map_value_to_color(probabilities) | |
else: | |
text_color = map_value_to_color(probabilities) | |
history += text_color | |
# ========== 避免不完整的utf-8编码 ========== | |
completion_tokens.append(token) | |
all_text = self.str_detokenize(completion_tokens) | |
if not all_text: | |
continue | |
completion_tokens = [] # 完整则清空缓存 | |
history += repr(all_text)[1:-1] | |
return history + NOCOLOR | |
def kv_cache_seq_ltrim(self, n_keep, n_discard=256, n_past=-1, im_start=None): | |
if n_keep < 0: | |
return | |
if n_past < 0: | |
n_past = self.n_tokens | |
if im_start is not None: # [<|im_start|>, name, nl] | |
lps = compute_lps_array(im_start) | |
_idx = kmp_search(self.input_ids, im_start, n_keep + n_discard, n_past, lps) | |
if _idx >= n_keep: # 其实是大于等于 n_keep + n_discard | |
n_discard = _idx - n_keep # 截断到最近的 im_start 序列结构 | |
else: | |
_idx = kmp_search(self.input_ids, im_start, n_keep, n_past, lps) | |
if _idx >= n_keep: | |
n_keep = _idx + len(im_start) # 至少保留一个 im_start 序列结构 | |
print(im_start, n_keep, n_discard, _idx) | |
self._ctx.kv_cache_seq_rm(-1, n_keep, n_keep + n_discard) | |
self._ctx.kv_cache_seq_shift(0, n_keep + n_discard, n_past, -n_discard) | |
self.input_ids[n_keep:n_past - n_discard] = self.input_ids[n_keep + n_discard:n_past] | |
self.n_tokens = n_past - n_discard | |
def eval_t(self, tokens, n_keep=4, n_discard=256, im_start=None): | |
if self._n_ctx < self.n_tokens + len(tokens): | |
tmp_n_discard = max(n_discard, self.n_tokens + len(tokens) - self._n_ctx) | |
self.kv_cache_seq_ltrim(n_keep, tmp_n_discard, im_start=im_start) | |
for i in range(0, len(tokens), self.n_batch): | |
batch = tokens[i: i + self.n_batch] | |
n_past = self.n_tokens | |
n_tokens = len(batch) | |
self._batch.set_batch( | |
batch=batch, n_past=n_past, logits_all=self.context_params.logits_all | |
) | |
self._ctx.decode(self._batch) | |
# Save tokens | |
self.input_ids[n_past: n_past + n_tokens] = batch | |
# Save logits | |
rows = n_tokens | |
cols = self._n_vocab | |
offset = ( | |
0 if self.context_params.logits_all else n_tokens - 1 | |
) # NOTE: Only save the last token logits if logits_all is False | |
self.scores[n_past + offset: n_past + n_tokens, :].reshape(-1)[ | |
: | |
] = self._ctx.get_logits()[offset * cols: rows * cols] | |
# Update n_tokens | |
self.n_tokens += n_tokens | |
self.venv[-1] += n_tokens | |
return self.n_tokens | |
def sample_t( | |
self, | |
top_k: int = 40, | |
top_p: float = 0.95, | |
min_p: float = 0.05, | |
typical_p: float = 1.0, | |
temp: float = 0.80, | |
repeat_penalty: float = 1.1, | |
repeat_last_n: int = 64, | |
frequency_penalty: float = 0.0, | |
presence_penalty: float = 0.0, | |
tfs_z: float = 1.0, | |
mirostat_mode: int = 0, | |
mirostat_eta: float = 0.1, | |
mirostat_tau: float = 5.0, | |
penalize_nl: bool = True, | |
logits_processor=None, | |
grammar: Optional[LlamaGrammar] = None, | |
): | |
last_n_tokens_data = [llama_cpp.llama_token(0)] * max( | |
0, repeat_last_n - self.n_tokens | |
) + self._input_ids[-repeat_last_n:].tolist() | |
last_n_tokens_size = len(last_n_tokens_data) | |
n_vocab = self._n_vocab | |
n_ctx = self._n_ctx | |
top_k = n_vocab if top_k <= 0 else top_k | |
last_n_tokens_size = n_ctx if last_n_tokens_size < 0 else last_n_tokens_size | |
last_n_tokens_data_c = (llama_cpp.llama_token * last_n_tokens_size)( | |
*last_n_tokens_data | |
) | |
logits: npt.NDArray[np.single] = self.scores[self.n_tokens - 1: self.n_tokens, :].ravel() | |
if logits_processor is not None: | |
logits[:] = logits_processor(self._input_ids, logits) | |
self._candidates.copy_logits(logits) | |
self._ctx.sample_repetition_penalties( | |
candidates=self._candidates, | |
last_tokens_data=last_n_tokens_data_c, | |
penalty_last_n=last_n_tokens_size, | |
penalty_repeat=repeat_penalty, | |
penalty_freq=frequency_penalty, | |
penalty_present=presence_penalty, | |
) | |
if not penalize_nl: | |
nl_logit = logits[self._token_nl] | |
self._candidates.candidates.data[self._token_nl].logit = llama_cpp.c_float( | |
nl_logit | |
) | |
if grammar is not None: | |
self._ctx.sample_grammar( | |
candidates=self._candidates, | |
grammar=grammar, | |
) | |
if temp < 0.0: | |
self._ctx.sample_softmax(candidates=self._candidates) | |
id_ = self._candidates.candidates.data[0].id | |
elif temp == 0.0: | |
id_ = self._ctx.sample_token_greedy(candidates=self._candidates) | |
elif mirostat_mode == 1: | |
self._ctx.sample_temp(candidates=self._candidates, temp=temp) | |
id_ = self._ctx.sample_token_mirostat( | |
candidates=self._candidates, | |
tau=mirostat_tau, | |
eta=mirostat_eta, | |
mu=2.0 * mirostat_tau, | |
m=100, | |
) | |
elif mirostat_mode == 2: | |
self._ctx.sample_temp(candidates=self._candidates, temp=temp) | |
id_ = self._ctx.sample_token_mirostat_v2( | |
candidates=self._candidates, | |
tau=mirostat_tau, | |
eta=mirostat_eta, | |
mu=2.0 * mirostat_tau, | |
) | |
else: | |
self._ctx.sample_top_k(candidates=self._candidates, k=top_k, min_keep=1) | |
self._ctx.sample_tail_free(candidates=self._candidates, z=tfs_z, min_keep=1) | |
self._ctx.sample_typical( | |
candidates=self._candidates, p=typical_p, min_keep=1 | |
) | |
self._ctx.sample_top_p(candidates=self._candidates, p=top_p, min_keep=1) | |
self._ctx.sample_min_p(candidates=self._candidates, p=min_p, min_keep=1) | |
self._ctx.sample_temp(candidates=self._candidates, temp=temp) | |
id_ = self._ctx.sample_token(candidates=self._candidates) | |
if grammar is not None: | |
self._ctx.grammar_accept_token(grammar=grammar, token=id_) | |
return id_ | |
def generate_t( | |
self, | |
tokens: Sequence[int], | |
n_keep, | |
n_discard: int = 256, | |
im_start=None, | |
top_k: int = 40, | |
top_p: float = 0.95, | |
min_p: float = 0.05, | |
typical_p: float = 1.0, | |
temp: float = 0.80, | |
repeat_penalty: float = 1.1, | |
repeat_last_n: int = 64, | |
frequency_penalty: float = 0.0, | |
presence_penalty: float = 0.0, | |
tfs_z: float = 1.0, | |
mirostat_mode: int = 0, | |
mirostat_tau: float = 5.0, | |
mirostat_eta: float = 0.1, | |
logits_processor: Optional[LogitsProcessorList] = None, | |
stopping_criteria: Optional[StoppingCriteriaList] = None, | |
grammar: Optional[LlamaGrammar] = None, | |
) -> Generator[int, Optional[Sequence[int]], None]: | |
typical_p = float(typical_p) | |
frequency_penalty = float(frequency_penalty) | |
presence_penalty = float(presence_penalty) | |
tfs_z = float(tfs_z) | |
mirostat_tau = float(mirostat_tau) | |
while True: | |
self.eval_t(tokens, n_keep, n_discard, im_start=im_start) | |
token = self.sample_t( | |
top_k=top_k, | |
top_p=top_p, | |
min_p=min_p, | |
typical_p=typical_p, | |
temp=temp, | |
repeat_penalty=repeat_penalty, | |
repeat_last_n=repeat_last_n, | |
frequency_penalty=frequency_penalty, | |
presence_penalty=presence_penalty, | |
tfs_z=tfs_z, | |
mirostat_mode=mirostat_mode, | |
mirostat_tau=mirostat_tau, | |
mirostat_eta=mirostat_eta, | |
logits_processor=logits_processor, | |
grammar=grammar, | |
) | |
if stopping_criteria is not None and stopping_criteria( | |
self._input_ids, self._scores[-1, :] | |
): | |
return | |
tokens = yield token | |
if tokens is None: | |
tokens = [token] | |
def load_session(self, filepath: str): | |
n_tokens = POINTER(c_size_t)(c_size_t(0)) | |
tokens = (llama_cpp.llama_token * self.n_ctx())() | |
retn = llama_cpp.llama_load_session_file(self._ctx.ctx, | |
filepath.encode('utf-8'), | |
tokens, | |
self.n_ctx(), | |
n_tokens) | |
self.n_tokens = n_tokens.contents.value | |
self.input_ids[:self.n_tokens] = tokens[:self.n_tokens] | |
self._venv_init() | |
return retn | |
def save_session(self, filepath: str): | |
tokens = self._input_ids.tolist() | |
tokens = (llama_cpp.llama_token * len(tokens))(*tokens) | |
return llama_cpp.llama_save_session_file(self._ctx.ctx, filepath.encode('utf-8'), tokens, self.n_tokens) | |