Spaces:
Runtime error
Runtime error
import json | |
import sys | |
from argparse import Namespace | |
import torch | |
import os | |
def load_hyperparam(default_args): | |
""" | |
Load arguments form argparse and config file | |
Priority: default options < config file < command line args | |
""" | |
with open(default_args.config_path, mode="r", encoding="utf-8") as f: | |
config_args_dict = json.load(f) | |
default_args_dict = vars(default_args) | |
command_line_args_dict = {k: default_args_dict[k] for k in [ | |
a[2:] for a in sys.argv if (a[:2] == "--" and "local_rank" not in a) | |
]} | |
default_args_dict.update(config_args_dict) | |
default_args_dict.update(command_line_args_dict) | |
args = Namespace(**default_args_dict) | |
return args | |
def _load_state_dict_into_model(model_to_load, model_path, start_prefix=""): | |
# Convert old format to new format if needed from a PyTorch state_dict | |
# copy state_dict so _load_from_state_dict can modify it | |
state_dict = torch.load(model_path, map_location="cpu") | |
metadata = getattr(state_dict, "_metadata", None) | |
state_dict = state_dict.copy() | |
state_dict['target.lm.weight'] = state_dict['target.lm.output_layer.weight'] | |
del state_dict['target.lm.output_layer.weight'] | |
state_dict['embedding.embedding.weight'] = state_dict['embedding.word.embedding.weight'] | |
del state_dict['embedding.word.embedding.weight'] | |
if metadata is not None: | |
metadata['embedding.embedding'] = metadata['embedding.word.embedding'] | |
metadata['target.lm'] = metadata['target.lm.output_layer'] | |
if metadata.get('embedding.dropout', None) is not None: | |
del metadata['embedding.dropout'] | |
del metadata['embedding.word'] | |
del metadata['embedding.word.embedding'] | |
del metadata['target.lm.output_layer'] | |
del metadata['target.lm.softmax'] | |
del metadata['target.lm.criterion'] | |
state_dict._metadata = metadata | |
error_msgs = [] | |
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants | |
# so we need to apply the function recursively. | |
def load(module, state_dict, prefix=""): | |
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) | |
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) | |
# Parameters of module and children will start with prefix. We can exit early if there are none in this | |
# state_dict | |
if len([key for key in state_dict if key.startswith(prefix)]) > 0: | |
import deepspeed | |
# In sharded models, each shard has only part of the full state_dict, so only gather | |
# parameters that are in the current state_dict. | |
named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False)) | |
params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters] | |
if len(params_to_gather) > 0: | |
# because zero3 puts placeholders in model params, this context | |
# manager gathers (unpartitions) the params of the current layer, then loads from | |
# the state dict and then re-partitions them again | |
with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0): | |
if torch.distributed.get_rank() == 0: | |
module._load_from_state_dict(*args) | |
for name, child in module._modules.items(): | |
if child is not None: | |
load(child, state_dict, prefix + name + ".") | |
load(model_to_load, state_dict, prefix=start_prefix) | |
# Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so | |
# it's safe to delete it. | |
del state_dict | |
return model_to_load | |
def convert_normal_parameter_to_int8(model, threshold=6.0, modules_to_not_convert=None, current_key_name=None): | |
import bitsandbytes as bnb | |
modules_to_not_convert = ["lm"] if modules_to_not_convert is None else modules_to_not_convert | |
for name, module in model.named_children(): | |
if current_key_name is None: | |
current_key_name = [] | |
current_key_name.append(name) | |
if len(list(module.children())) > 0: | |
convert_normal_parameter_to_int8(module, threshold, modules_to_not_convert, current_key_name) | |
if isinstance(module, bnb.nn.Linear8bitLt) and name not in modules_to_not_convert: | |
# Check if the current key is not in the `modules_to_not_convert` | |
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert): | |
model._modules[name].weight = bnb.nn.Int8Params( | |
module.weight.data, | |
requires_grad=False, | |
has_fp16_weights=False | |
) | |
# Force requires grad to False to avoid unexpected errors | |
model._modules[name].requires_grad_(False) | |
# Remove the last key for recursion | |
current_key_name.pop(-1) | |
return model | |
def load_model(model, model_path): | |
if os.path.isdir(model_path): | |
index_filename = os.path.join(model_path, 'pytorch_model.bin.index.json') | |
with open(index_filename, "r") as f: | |
index = json.loads(f.read()) | |
shard_filenames = sorted(set(index["weight_map"].values())) | |
shard_filenames = [os.path.join(model_path, f) for f in shard_filenames] | |
for shard_file in shard_filenames: | |
shard_checkpoint = torch.load(shard_file, map_location='cpu') | |
for name, parameter in model.named_parameters(): | |
if shard_checkpoint.get(name, None) is not None: | |
if 'target' in name: | |
parameter.data = shard_checkpoint['target.lm.output_layer.weight'] | |
elif 'embedding' in name: | |
parameter.data = shard_checkpoint['embedding.word.embedding.weight'] | |
else: | |
parameter.data = shard_checkpoint[name] | |
parameter.requires_grad = False | |
del shard_checkpoint | |
else: | |
checkpoint = torch.load(model_path, map_location='cpu') | |
for parameter_name, parameter in model.named_parameters(): | |
if 'target' in parameter_name: | |
parameter.data = checkpoint['target.lm.output_layer.weight'] | |
elif 'embedding' in parameter_name: | |
parameter.data = checkpoint['embedding.word.embedding.weight'] | |
else: | |
parameter.data = checkpoint[parameter_name] | |
parameter.requires_grad = False | |
del checkpoint | |
return model | |