|
import gradio as gr |
|
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
import torch |
|
from PIL import Image |
|
from diffusers.utils import export_to_video |
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") |
|
|
|
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16") |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
pipe = pipe.to(device) |
|
|
|
max_length = 16 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
def image_to_text(image_paths): |
|
images=[image_paths] |
|
|
|
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
return preds[0] |
|
|
|
def text_to_video(image_paths): |
|
prompt = image_to_text(image_paths) |
|
video_frames = pipe(prompt, num_inference_steps=25).frames |
|
video_path = export_to_video(video_frames) |
|
return video_frames |
|
|
|
|
|
title = "" |
|
description = "" |
|
|
|
interface = gr.Interface( |
|
fn=text_to_video, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=gr.Video(), |
|
title=title, |
|
description=description, |
|
|
|
) |
|
|
|
interface.launch(debug=True) |