File size: 6,257 Bytes
d72c37e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
 
class FolderData(Dataset):
    def __init__(self,
        root_dir,
        caption_file=None,
        image_transforms=[],
        ext="jpg",
        default_caption="",
        postprocess=None,
        return_paths=False,
        ) -> None:
        """Create a dataset from a folder of images.
        If you pass in a root directory it will be searched for images
        ending in ext (ext can be a list)
        """
        self.root_dir = Path(root_dir)
        self.default_caption = default_caption
        self.return_paths = return_paths
        if isinstance(postprocess, DictConfig):
            postprocess = instantiate_from_config(postprocess)
        self.postprocess = postprocess
        if caption_file is not None:
            with open(caption_file, "rt") as f:
                ext = Path(caption_file).suffix.lower()
                if ext == ".json":
                    captions = json.load(f)
                elif ext == ".jsonl":
                    lines = f.readlines()
                    lines = [json.loads(x) for x in lines]
                    captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
                else:
                    raise ValueError(f"Unrecognised format: {ext}")
            self.captions = captions
        else:
            self.captions = None

        if not isinstance(ext, (tuple, list, ListConfig)):
            ext = [ext]

        # Only used if there is no caption file
        self.paths = []
        for e in ext:
            self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
        self.tform = make_tranforms(image_transforms)

    def __len__(self):
        if self.captions is not None:
            return len(self.captions.keys())
        else:
            return len(self.paths)

    def __getitem__(self, index):
        data = {}
        if self.captions is not None:
            chosen = list(self.captions.keys())[index]
            caption = self.captions.get(chosen, None)
            if caption is None:
                caption = self.default_caption
            filename = self.root_dir/chosen
        else:
            filename = self.paths[index]

        if self.return_paths:
            data["path"] = str(filename)

        im = Image.open(filename).convert("RGB")
        im = self.process_im(im)
        data["image"] = im

        if self.captions is not None:
            data["txt"] = caption
        else:
            data["txt"] = self.default_caption

        if self.postprocess is not None:
            data = self.postprocess(data)

        return data

    def process_im(self, im):
        im = im.convert("RGB")
        return self.tform(im)
import random

class TransformDataset():
    def __init__(self, ds, extra_label="sksbspic"):
        self.ds = ds
        self.extra_label = extra_label
        self.transforms = {
            "align": transforms.Resize(768),
            "centerzoom": transforms.CenterCrop(768),
            "randzoom": transforms.RandomCrop(768),
        }


    def __getitem__(self, index):
        data = self.ds[index]

        im = data['image']
        im = im.permute(2,0,1)
        # In case data is smaller than expected
        im = transforms.Resize(1024)(im)

        tform_name = random.choice(list(self.transforms.keys()))
        im = self.transforms[tform_name](im)

        im = im.permute(1,2,0)

        data['image'] = im
        data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"

        return data

    def __len__(self):
        return len(self.ds)

def hf_dataset(
    name,
    image_transforms=[],
    image_column="image",
    text_column="text",
    split='train',
    image_key='image',
    caption_key='txt',
    ):
    """Make huggingface dataset with appropriate list of transforms applied
    """
    ds = load_dataset(name, split=split)
    tform = make_tranforms(image_transforms)

    assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
    assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"

    def pre_process(examples):
        processed = {}
        processed[image_key] = [tform(im) for im in examples[image_column]]
        processed[caption_key] = examples[text_column]
        return processed

    ds.set_transform(pre_process)
    return ds

class TextOnly(Dataset):
    def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
        """Returns only captions with dummy images"""
        self.output_size = output_size
        self.image_key = image_key
        self.caption_key = caption_key
        if isinstance(captions, Path):
            self.captions = self._load_caption_file(captions)
        else:
            self.captions = captions

        if n_gpus > 1:
            # hack to make sure that all the captions appear on each gpu
            repeated = [n_gpus*[x] for x in self.captions]
            self.captions = []
            [self.captions.extend(x) for x in repeated]

    def __len__(self):
        return len(self.captions)

    def __getitem__(self, index):
        dummy_im = torch.zeros(3, self.output_size, self.output_size)
        dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
        return {self.image_key: dummy_im, self.caption_key: self.captions[index]}

    def _load_caption_file(self, filename):
        with open(filename, 'rt') as f:
            captions = f.readlines()
        return [x.strip('\n') for x in captions]



import random
import json
class IdRetreivalDataset(FolderData):
    def __init__(self, ret_file, *args, **kwargs):
        super().__init__(*args, **kwargs)
        with open(ret_file, "rt") as f:
            self.ret = json.load(f)

    def __getitem__(self, index):
        data = super().__getitem__(index)
        key = self.paths[index].name
        matches = self.ret[key]
        if len(matches) > 0:
            retreived = random.choice(matches)
        else:
            retreived = key
        filename = self.root_dir/retreived
        im = Image.open(filename).convert("RGB")
        im = self.process_im(im)
        # data["match"] = im
        data["match"] = torch.cat((data["image"], im), dim=-1)
        return data