Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Tuple | |
from scipy import interpolate | |
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
from IPython.display import clear_output | |
import abc | |
class GuideModel(torch.nn.Module, abc.ABC): | |
def __init__(self) -> None: | |
super().__init__() | |
def preprocess(self, x_img): | |
pass | |
def compute_loss(self, inp): | |
pass | |
class Guider(torch.nn.Module): | |
def __init__(self, sampler, guide_model, scale=1.0, verbose=False): | |
"""Apply classifier guidance | |
Specify a guidance scale as either a scalar | |
Or a schedule as a list of tuples t = 0->1 and scale, e.g. | |
[(0, 10), (0.5, 20), (1, 50)] | |
""" | |
super().__init__() | |
self.sampler = sampler | |
self.index = 0 | |
self.show = verbose | |
self.guide_model = guide_model | |
self.history = [] | |
if isinstance(scale, (Tuple, List)): | |
times = np.array([x[0] for x in scale]) | |
values = np.array([x[1] for x in scale]) | |
self.scale_schedule = {"times": times, "values": values} | |
else: | |
self.scale_schedule = float(scale) | |
self.ddim_timesteps = sampler.ddim_timesteps | |
self.ddpm_num_timesteps = sampler.ddpm_num_timesteps | |
def get_scales(self): | |
if isinstance(self.scale_schedule, float): | |
return len(self.ddim_timesteps)*[self.scale_schedule] | |
interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"]) | |
fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps | |
return interpolater(fractional_steps) | |
def modify_score(self, model, e_t, x, t, c): | |
# TODO look up index by t | |
scale = self.get_scales()[self.index] | |
if (scale == 0): | |
return e_t | |
sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device) | |
with torch.enable_grad(): | |
x_in = x.detach().requires_grad_(True) | |
pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t) | |
x_img = model.first_stage_model.decode((1/0.18215)*pred_x0) | |
inp = self.guide_model.preprocess(x_img) | |
loss = self.guide_model.compute_loss(inp) | |
grads = torch.autograd.grad(loss.sum(), x_in)[0] | |
correction = grads * scale | |
if self.show: | |
clear_output(wait=True) | |
print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item()) | |
self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()]) | |
plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2) | |
plt.axis('off') | |
plt.show() | |
plt.imshow(correction[0][0].detach().cpu()) | |
plt.axis('off') | |
plt.show() | |
e_t_mod = e_t - sqrt_1ma*correction | |
if self.show: | |
fig, axs = plt.subplots(1, 3) | |
axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2) | |
axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2) | |
axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2) | |
plt.show() | |
self.index += 1 | |
return e_t_mod |