File size: 21,984 Bytes
d3c1b63
dc12c31
 
d3c1b63
dc12c31
d3c1b63
dc12c31
d3c1b63
dc12c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
---
title: webui-demo
app_file: server.py
sdk: gradio
sdk_version: 3.33.1
---
# Text generation web UI

A Gradio web UI for Large Language Models.

Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation.

|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_instruct.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_chat.png) |
|:---:|:---:|
|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_default.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_parameters.png) |

## Features

* 3 interface modes: default (two columns), notebook, and chat
* Multiple model backends: [transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp), [ExLlama](https://github.com/turboderp/exllama), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [CTransformers](https://github.com/marella/ctransformers)
* Dropdown menu for quickly switching between different models
* LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA
* Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others
* 4-bit, 8-bit, and CPU inference through the transformers library
* Use llama.cpp models with transformers samplers (`llamacpp_HF` loader)
* [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal)
* [Extensions framework](docs/Extensions.md)
* [Custom chat characters](docs/Chat-mode.md)
* Very efficient text streaming
* Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai)
* API, including endpoints for websocket streaming ([see the examples](https://github.com/oobabooga/text-generation-webui/blob/main/api-examples))

To learn how to use the various features, check out the Documentation: https://github.com/oobabooga/text-generation-webui/tree/main/docs

## Installation

### One-click installers

| Windows | Linux | macOS | WSL |
|--------|--------|--------|--------|
| [oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_windows.zip) | [oobabooga-linux.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_linux.zip) |[oobabooga-macos.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_macos.zip) | [oobabooga-wsl.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_wsl.zip) |

Just download the zip above, extract it, and double-click on "start". The web UI and all its dependencies will be installed in the same folder.

* The source codes and more information can be found here: https://github.com/oobabooga/one-click-installers
* There is no need to run the installers as admin.
* Huge thanks to [@jllllll](https://github.com/jllllll), [@ClayShoaf](https://github.com/ClayShoaf), and [@xNul](https://github.com/xNul) for their contributions to these installers.

### Manual installation using Conda

Recommended if you have some experience with the command-line.

#### 0. Install Conda

https://docs.conda.io/en/latest/miniconda.html

On Linux or WSL, it can be automatically installed with these two commands ([source](https://educe-ubc.github.io/conda.html)):

```
curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh"
bash Miniconda3.sh
```

#### 1. Create a new conda environment

```
conda create -n textgen python=3.10.9
conda activate textgen
```

#### 2. Install Pytorch

| System | GPU | Command |
|--------|---------|---------|
| Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` |
| Linux/WSL | CPU only | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu` |
| Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` |
| MacOS + MPS | Any | `pip3 install torch torchvision torchaudio` |
| Windows | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117` |
| Windows | CPU only | `pip3 install torch torchvision torchaudio` |

The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. 

#### 3. Install the web UI

```
git clone https://github.com/oobabooga/text-generation-webui
cd text-generation-webui
pip install -r requirements.txt
```

#### AMD, Metal, Intel Arc, and CPUs without AVX2

1) Replace the last command above with

```
pip install -r requirements_nocuda.txt
```

2) Manually install llama-cpp-python using the appropriate command for your hardware: [Installation from PyPI](https://github.com/abetlen/llama-cpp-python#installation-from-pypi).
   
3) Do the same for CTransformers: [Installation](https://github.com/marella/ctransformers#installation).

4) AMD: Manually install AutoGPTQ: [Installation](https://github.com/PanQiWei/AutoGPTQ#installation).

5) AMD: Manually install [ExLlama](https://github.com/turboderp/exllama) by simply cloning it into the `repositories` folder (it will be automatically compiled at runtime after that):

```
cd text-generation-webui
mkdir repositories
cd repositories
git clone https://github.com/turboderp/exllama
```

#### bitsandbytes on older NVIDIA GPUs

bitsandbytes >= 0.39 may not work. In that case, to use `--load-in-8bit`, you may have to downgrade like this:

* Linux: `pip install bitsandbytes==0.38.1`
* Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl`

### Alternative: Docker

```
ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} .
cp docker/.env.example .env
# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model
docker compose up --build
```

* You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Docker.md) for instructions.
* For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui-docker).

### Updating the requirements

From time to time, the `requirements.txt` changes. To update, use these commands:

```
conda activate textgen
cd text-generation-webui
pip install -r requirements.txt --upgrade
```

## Downloading models

Models should be placed in the `text-generation-webui/models` folder. They are usually downloaded from [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads).

* Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example:

```
text-generation-webui
β”œβ”€β”€ models
β”‚Β Β  β”œβ”€β”€ lmsys_vicuna-33b-v1.3
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ config.json
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ generation_config.json
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model-00001-of-00007.bin
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model-00002-of-00007.bin
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model-00003-of-00007.bin
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model-00004-of-00007.bin
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model-00005-of-00007.bin
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model-00006-of-00007.bin
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model-00007-of-00007.bin
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ pytorch_model.bin.index.json
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ special_tokens_map.json
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ tokenizer_config.json
β”‚Β Β  β”‚Β Β  └── tokenizer.model
```

* GGUF models are a single file and should be placed directly into `models`. Example:

```
text-generation-webui
β”œβ”€β”€ models
β”‚Β Β  β”œβ”€β”€ llama-2-13b-chat.Q4_K_M.gguf
```

In both cases, you can use the "Model" tab of the UI to download the model from Hugging Face automatically. It is also possible to download via the command-line with `python download-model.py organization/model` (use `--help` to see all the options).

#### GPT-4chan

<details>
<summary>
Instructions
</summary>

[GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options:

* Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model)
* Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/)

The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version.

After downloading the model, follow these steps:

1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`.
2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json).
3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan):

```
python download-model.py EleutherAI/gpt-j-6B --text-only
```

When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format:

![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png)

</details>

## Starting the web UI

    conda activate textgen
    cd text-generation-webui
    python server.py

Then browse to 

`http://localhost:7860/?__theme=dark`

Optionally, you can use the following command-line flags:

#### Basic settings

| Flag                                       | Description |
|--------------------------------------------|-------------|
| `-h`, `--help`                             | Show this help message and exit. |
| `--multi-user`                             | Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is highly experimental. |
| `--character CHARACTER`                    | The name of the character to load in chat mode by default. |
| `--model MODEL`                            | Name of the model to load by default. |
| `--lora LORA [LORA ...]`                   | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. |
| `--model-dir MODEL_DIR`                    | Path to directory with all the models. |
| `--lora-dir LORA_DIR`                      | Path to directory with all the loras. |
| `--model-menu`                             | Show a model menu in the terminal when the web UI is first launched. |
| `--settings SETTINGS_FILE`                 | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. |
| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. |
| `--verbose`                                | Print the prompts to the terminal. |
| `--chat-buttons`                           | Show buttons on chat tab instead of hover menu. |

#### Model loader

| Flag                                       | Description |
|--------------------------------------------|-------------|
| `--loader LOADER`                          | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, ctransformers |

#### Accelerate/transformers

| Flag                                        | Description |
|---------------------------------------------|-------------|
| `--cpu`                                     | Use the CPU to generate text. Warning: Training on CPU is extremely slow.|
| `--auto-devices`                            | Automatically split the model across the available GPU(s) and CPU. |
|  `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. |
| `--cpu-memory CPU_MEMORY`                   | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.|
| `--disk`                                    | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
| `--disk-cache-dir DISK_CACHE_DIR`           | Directory to save the disk cache to. Defaults to `cache/`. |
| `--load-in-8bit`                            | Load the model with 8-bit precision (using bitsandbytes).|
| `--bf16`                                    | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--no-cache`                                | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. |
| `--xformers`                                | Use xformer's memory efficient attention. This should increase your tokens/s. |
| `--sdp-attention`                           | Use torch 2.0's sdp attention. |
| `--trust-remote-code`                       | Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon. |

#### Accelerate 4-bit

⚠️ Requires minimum compute of 7.0 on Windows at the moment.

| Flag                                        | Description |
|---------------------------------------------|-------------|
| `--load-in-4bit`                            | Load the model with 4-bit precision (using bitsandbytes). |
| `--compute_dtype COMPUTE_DTYPE`             | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. |
| `--quant_type QUANT_TYPE`                   | quant_type for 4-bit. Valid options: nf4, fp4. |
| `--use_double_quant`                        | use_double_quant for 4-bit. |

#### GGUF (for llama.cpp and ctransformers)

| Flag        | Description |
|-------------|-------------|
| `--threads` | Number of threads to use. |
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. |
| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. |
| `--n_ctx N_CTX` | Size of the prompt context. |

#### llama.cpp

| Flag          | Description |
|---------------|---------------|
| `--no-mmap`   | Prevent mmap from being used. |
| `--mlock`     | Force the system to keep the model in RAM. |
| `--mul_mat_q` | Activate new mulmat kernels. |
| `--cache-capacity CACHE_CAPACITY`   | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. |
| `--tensor_split TENSOR_SPLIT`  | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 |
| `--llama_cpp_seed SEED`        | Seed for llama-cpp models. Default 0 (random). |
| `--cpu`                        | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. |
|`--cfg-cache`                   | llamacpp_HF: Create an additional cache for CFG negative prompts. |

#### ctransformers

| Flag        | Description |
|-------------|-------------|
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. |

#### AutoGPTQ

| Flag             | Description |
|------------------|-------------|
| `--triton`                     | Use triton. |
| `--no_inject_fused_attention`  | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. |
| `--no_inject_fused_mlp`        | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. |
| `--no_use_cuda_fp16`           | This can make models faster on some systems. |
| `--desc_act`                   | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. |
| `--disable_exllama`            | Disable ExLlama kernel, which can improve inference speed on some systems. |

#### ExLlama

| Flag             | Description |
|------------------|-------------|
|`--gpu-split`     | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` |
|`--max_seq_len MAX_SEQ_LEN`           | Maximum sequence length. |
|`--cfg-cache`                         | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. |

#### GPTQ-for-LLaMa

| Flag                      | Description |
|---------------------------|-------------|
| `--wbits WBITS`           | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. |
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. |
| `--groupsize GROUPSIZE`   | Group size. |
| `--pre_layer PRE_LAYER [PRE_LAYER ...]`  | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. |
| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. |
| `--monkey-patch`          | Apply the monkey patch for using LoRAs with quantized models.

#### DeepSpeed

| Flag                                  | Description |
|---------------------------------------|-------------|
| `--deepspeed`                         | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. |
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. |
| `--local_rank LOCAL_RANK`             | DeepSpeed: Optional argument for distributed setups. |

#### RWKV

| Flag                            | Description |
|---------------------------------|-------------|
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". |
| `--rwkv-cuda-on`                | RWKV: Compile the CUDA kernel for better performance. |

#### RoPE (for llama.cpp, ExLlama, ExLlamaV2, and transformers)

| Flag             | Description |
|------------------|-------------|
| `--alpha_value ALPHA_VALUE`           | Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both. |
| `--rope_freq_base ROPE_FREQ_BASE`     | If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63). |
| `--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should be set to (context length) / (model's original context length). Equal to 1/rope_freq_scale. |

#### Gradio

| Flag                                  | Description |
|---------------------------------------|-------------|
| `--listen`                            | Make the web UI reachable from your local network. |
| `--listen-host LISTEN_HOST`           | The hostname that the server will use. |
| `--listen-port LISTEN_PORT`           | The listening port that the server will use. |
| `--share`                             | Create a public URL. This is useful for running the web UI on Google Colab or similar. |
| `--auto-launch`                       | Open the web UI in the default browser upon launch. |
| `--gradio-auth USER:PWD`              | set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3" |
| `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" |
| `--ssl-keyfile SSL_KEYFILE`           | The path to the SSL certificate key file. |
| `--ssl-certfile SSL_CERTFILE`         | The path to the SSL certificate cert file. |

#### API

| Flag                                  | Description |
|---------------------------------------|-------------|
| `--api`                               | Enable the API extension. |
| `--public-api`                        | Create a public URL for the API using Cloudfare. |
| `--public-api-id PUBLIC_API_ID`       | Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. |
| `--api-blocking-port BLOCKING_PORT`   | The listening port for the blocking API. |
| `--api-streaming-port STREAMING_PORT` | The listening port for the streaming API. |

#### Multimodal

| Flag                                  | Description |
|---------------------------------------|-------------|
| `--multimodal-pipeline PIPELINE`      | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. |

## Presets

Inference settings presets can be created under `presets/` as yaml files. These files are detected automatically at startup.

The presets that are included by default are the result of a contest that received 7215 votes. More details can be found [here](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md).

## Contributing

If you would like to contribute to the project, check out the [Contributing guidelines](https://github.com/oobabooga/text-generation-webui/wiki/Contributing-guidelines).

## Community

* Subreddit: https://www.reddit.com/r/oobabooga/
* Discord: https://discord.gg/jwZCF2dPQN

## Acknowledgment

In August 2023, [Andreessen Horowitz](https://a16z.com/) (a16z) provided a generous grant to encourage and support my independent work on this project. I am **extremely** grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui.