File size: 11,946 Bytes
dc12c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr

from modules import loaders, presets, shared, ui, ui_chat, utils
from modules.utils import gradio


def create_ui(default_preset):
    generate_params = presets.load_preset(default_preset)
    with gr.Tab("Parameters", elem_id="parameters"):
        with gr.Tab("Generation"):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset, label='Preset', elem_classes='slim-dropdown')
                        ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button')
                        shared.gradio['save_preset'] = gr.Button('💾', elem_classes='refresh-button')
                        shared.gradio['delete_preset'] = gr.Button('🗑️', elem_classes='refresh-button')

                with gr.Column():
                    shared.gradio['filter_by_loader'] = gr.Dropdown(label="Filter by loader", choices=["All"] + list(loaders.loaders_and_params.keys()), value="All", elem_classes='slim-dropdown')

            with gr.Row():
                with gr.Column():
                    with gr.Box():
                        with gr.Row():
                            with gr.Column():
                                shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
                                shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature')
                                shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p')
                                shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k')
                                shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p')
                                shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff')
                                shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff')
                                shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
                                shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')

                            with gr.Column():
                                shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty')
                                shared.gradio['repetition_penalty_range'] = gr.Slider(0, 4096, step=64, value=generate_params['repetition_penalty_range'], label='repetition_penalty_range')
                                shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty')
                                shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size')
                                shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length')
                                shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
                                shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')

                    with gr.Accordion("Learn more", open=False):
                        gr.Markdown("""

            For a technical description of the parameters, the [transformers documentation](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig) is a good reference.

            The best presets, according to the [Preset Arena](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md) experiment, are:

            * Instruction following:
                1) Divine Intellect
                2) Big O
                3) simple-1
                4) Space Alien
                5) StarChat
                6) Titanic
                7) tfs-with-top-a
                8) Asterism
                9) Contrastive Search

            * Chat:
                1) Midnight Enigma
                2) Yara
                3) Shortwave

            ### Temperature
            Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.
            ### top_p
            If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.
            ### top_k
            Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.
            ### typical_p
            If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.
            ### epsilon_cutoff
            In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.
            ### eta_cutoff
            In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.
            ### repetition_penalty
            Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.
            ### repetition_penalty_range
            The number of most recent tokens to consider for repetition penalty. 0 makes all tokens be used.
            ### encoder_repetition_penalty
            Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.
            ### no_repeat_ngram_size
            If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.
            ### min_length
            Minimum generation length in tokens.
            ### penalty_alpha
            Contrastive Search is enabled by setting this to greater than zero and unchecking "do_sample". It should be used with a low value of top_k, for instance, top_k = 4.

                        """, elem_classes="markdown")

                with gr.Column():
                    with gr.Box():
                        with gr.Row():
                            with gr.Column():
                                shared.gradio['guidance_scale'] = gr.Slider(-0.5, 2.5, step=0.05, value=generate_params['guidance_scale'], label='guidance_scale', info='For CFG. 1.5 is a good value.')
                                shared.gradio['negative_prompt'] = gr.Textbox(value=shared.settings['negative_prompt'], label='Negative prompt', lines=3, elem_classes=['add_scrollbar'])
                                shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode', info='mode=1 is for llama.cpp only.')
                                shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
                                shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')

                            with gr.Column():
                                shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='For Contrastive Search. do_sample must be unchecked.')
                                shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams', info='For Beam Search, along with length_penalty and early_stopping.')
                                shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
                                shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')

                    with gr.Box():
                        with gr.Row():
                            with gr.Column():
                                shared.gradio['truncation_length'] = gr.Slider(value=get_truncation_length(), minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=256, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
                                shared.gradio['max_tokens_second'] = gr.Slider(value=shared.settings['max_tokens_second'], minimum=0, maximum=20, step=1, label='Maximum number of tokens/second', info='To make text readable in real time.')
                                shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas.', placeholder='"\\n", "\\nYou:"')
                            with gr.Column():
                                shared.gradio['auto_max_new_tokens'] = gr.Checkbox(value=shared.settings['auto_max_new_tokens'], label='auto_max_new_tokens', info='Expand max_new_tokens to the available context length.')
                                shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.')
                                shared.gradio['custom_token_bans'] = gr.Textbox(value=shared.settings['custom_token_bans'] or None, label='Custom token bans', info='Specific token IDs to ban from generating, comma-separated. The IDs can be found in the Default or Notebook tab.')
                                shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.')
                                shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.')
                                shared.gradio['stream'] = gr.Checkbox(value=shared.settings['stream'], label='Activate text streaming')

        ui_chat.create_chat_settings_ui()


def create_event_handlers():
    shared.gradio['filter_by_loader'].change(loaders.blacklist_samplers, gradio('filter_by_loader'), gradio(loaders.list_all_samplers()), show_progress=False)
    shared.gradio['preset_menu'].change(presets.load_preset_for_ui, gradio('preset_menu', 'interface_state'), gradio('interface_state') + gradio(presets.presets_params()))


def get_truncation_length():
    if shared.args.max_seq_len != shared.args_defaults.max_seq_len:
        return shared.args.max_seq_len
    if shared.args.n_ctx != shared.args_defaults.n_ctx:
        return shared.args.n_ctx
    else:
        return shared.settings['truncation_length']