Spaces:
Sleeping
Sleeping
import json | |
import os | |
import traceback | |
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer | |
from threading import Thread | |
import extensions.openai.completions as OAIcompletions | |
import extensions.openai.edits as OAIedits | |
import extensions.openai.embeddings as OAIembeddings | |
import extensions.openai.images as OAIimages | |
import extensions.openai.models as OAImodels | |
import extensions.openai.moderations as OAImoderations | |
from extensions.openai.defaults import clamp, default, get_default_req_params | |
from extensions.openai.errors import ( | |
InvalidRequestError, | |
OpenAIError, | |
ServiceUnavailableError | |
) | |
from extensions.openai.tokens import token_count, token_decode, token_encode | |
from extensions.openai.utils import debug_msg | |
from modules import shared | |
import cgi | |
import speech_recognition as sr | |
from pydub import AudioSegment | |
params = { | |
'port': int(os.environ.get('OPENEDAI_PORT')) if 'OPENEDAI_PORT' in os.environ else 5001, | |
} | |
class Handler(BaseHTTPRequestHandler): | |
def send_access_control_headers(self): | |
self.send_header("Access-Control-Allow-Origin", "*") | |
self.send_header("Access-Control-Allow-Credentials", "true") | |
self.send_header( | |
"Access-Control-Allow-Methods", | |
"GET,HEAD,OPTIONS,POST,PUT" | |
) | |
self.send_header( | |
"Access-Control-Allow-Headers", | |
"Origin, Accept, X-Requested-With, Content-Type, " | |
"Access-Control-Request-Method, Access-Control-Request-Headers, " | |
"Authorization" | |
) | |
def do_OPTIONS(self): | |
self.send_response(200) | |
self.send_access_control_headers() | |
self.send_header('Content-Type', 'application/json') | |
self.end_headers() | |
self.wfile.write("OK".encode('utf-8')) | |
def start_sse(self): | |
self.send_response(200) | |
self.send_access_control_headers() | |
self.send_header('Content-Type', 'text/event-stream') | |
self.send_header('Cache-Control', 'no-cache') | |
# self.send_header('Connection', 'keep-alive') | |
self.end_headers() | |
def send_sse(self, chunk: dict): | |
response = 'data: ' + json.dumps(chunk) + '\r\n\r\n' | |
debug_msg(response[:-4]) | |
self.wfile.write(response.encode('utf-8')) | |
def end_sse(self): | |
response = 'data: [DONE]\r\n\r\n' | |
debug_msg(response[:-4]) | |
self.wfile.write(response.encode('utf-8')) | |
def return_json(self, ret: dict, code: int = 200, no_debug=False): | |
self.send_response(code) | |
self.send_access_control_headers() | |
self.send_header('Content-Type', 'application/json') | |
response = json.dumps(ret) | |
r_utf8 = response.encode('utf-8') | |
self.send_header('Content-Length', str(len(r_utf8))) | |
self.end_headers() | |
self.wfile.write(r_utf8) | |
if not no_debug: | |
debug_msg(r_utf8) | |
def openai_error(self, message, code=500, error_type='APIError', param='', internal_message=''): | |
error_resp = { | |
'error': { | |
'message': message, | |
'code': code, | |
'type': error_type, | |
'param': param, | |
} | |
} | |
if internal_message: | |
print(error_type, message) | |
print(internal_message) | |
# error_resp['internal_message'] = internal_message | |
self.return_json(error_resp, code) | |
def openai_error_handler(func): | |
def wrapper(self): | |
try: | |
func(self) | |
except InvalidRequestError as e: | |
self.openai_error(e.message, e.code, e.__class__.__name__, e.param, internal_message=e.internal_message) | |
except OpenAIError as e: | |
self.openai_error(e.message, e.code, e.__class__.__name__, internal_message=e.internal_message) | |
except Exception as e: | |
self.openai_error(repr(e), 500, 'OpenAIError', internal_message=traceback.format_exc()) | |
return wrapper | |
def do_GET(self): | |
debug_msg(self.requestline) | |
debug_msg(self.headers) | |
if self.path.startswith('/v1/engines') or self.path.startswith('/v1/models'): | |
is_legacy = 'engines' in self.path | |
is_list = self.path in ['/v1/engines', '/v1/models'] | |
if is_legacy and not is_list: | |
model_name = self.path[self.path.find('/v1/engines/') + len('/v1/engines/'):] | |
resp = OAImodels.load_model(model_name) | |
elif is_list: | |
resp = OAImodels.list_models(is_legacy) | |
else: | |
model_name = self.path[len('/v1/models/'):] | |
resp = OAImodels.model_info(model_name) | |
self.return_json(resp) | |
elif '/billing/usage' in self.path: | |
# Ex. /v1/dashboard/billing/usage?start_date=2023-05-01&end_date=2023-05-31 | |
self.return_json({"total_usage": 0}, no_debug=True) | |
else: | |
self.send_error(404) | |
def do_POST(self): | |
if '/v1/audio/transcriptions' in self.path: | |
r = sr.Recognizer() | |
# Parse the form data | |
form = cgi.FieldStorage( | |
fp=self.rfile, | |
headers=self.headers, | |
environ={'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': self.headers['Content-Type']} | |
) | |
audio_file = form['file'].file | |
audio_data = AudioSegment.from_file(audio_file) | |
# Convert AudioSegment to raw data | |
raw_data = audio_data.raw_data | |
# Create AudioData object | |
audio_data = sr.AudioData(raw_data, audio_data.frame_rate, audio_data.sample_width) | |
whipser_language = form.getvalue('language', None) | |
whipser_model = form.getvalue('model', 'tiny') # Use the model from the form data if it exists, otherwise default to tiny | |
transcription = {"text": ""} | |
try: | |
transcription["text"] = r.recognize_whisper(audio_data, language=whipser_language, model=whipser_model) | |
except sr.UnknownValueError: | |
print("Whisper could not understand audio") | |
transcription["text"] = "Whisper could not understand audio UnknownValueError" | |
except sr.RequestError as e: | |
print("Could not request results from Whisper", e) | |
transcription["text"] = "Whisper could not understand audio RequestError" | |
self.return_json(transcription, no_debug=True) | |
return | |
debug_msg(self.requestline) | |
debug_msg(self.headers) | |
content_length = self.headers.get('Content-Length') | |
transfer_encoding = self.headers.get('Transfer-Encoding') | |
if content_length: | |
body = json.loads(self.rfile.read(int(content_length)).decode('utf-8')) | |
elif transfer_encoding == 'chunked': | |
chunks = [] | |
while True: | |
chunk_size = int(self.rfile.readline(), 16) # Read the chunk size | |
if chunk_size == 0: | |
break # End of chunks | |
chunks.append(self.rfile.read(chunk_size)) | |
self.rfile.readline() # Consume the trailing newline after each chunk | |
body = json.loads(b''.join(chunks).decode('utf-8')) | |
else: | |
self.send_response(400, "Bad Request: Either Content-Length or Transfer-Encoding header expected.") | |
self.end_headers() | |
return | |
debug_msg(body) | |
if '/completions' in self.path or '/generate' in self.path: | |
if not shared.model: | |
raise ServiceUnavailableError("No model loaded.") | |
is_legacy = '/generate' in self.path | |
is_streaming = body.get('stream', False) | |
if is_streaming: | |
self.start_sse() | |
response = [] | |
if 'chat' in self.path: | |
response = OAIcompletions.stream_chat_completions(body, is_legacy=is_legacy) | |
else: | |
response = OAIcompletions.stream_completions(body, is_legacy=is_legacy) | |
for resp in response: | |
self.send_sse(resp) | |
self.end_sse() | |
else: | |
response = '' | |
if 'chat' in self.path: | |
response = OAIcompletions.chat_completions(body, is_legacy=is_legacy) | |
else: | |
response = OAIcompletions.completions(body, is_legacy=is_legacy) | |
self.return_json(response) | |
elif '/edits' in self.path: | |
# deprecated | |
if not shared.model: | |
raise ServiceUnavailableError("No model loaded.") | |
req_params = get_default_req_params() | |
instruction = body['instruction'] | |
input = body.get('input', '') | |
temperature = clamp(default(body, 'temperature', req_params['temperature']), 0.001, 1.999) # fixup absolute 0.0 | |
top_p = clamp(default(body, 'top_p', req_params['top_p']), 0.001, 1.0) | |
response = OAIedits.edits(instruction, input, temperature, top_p) | |
self.return_json(response) | |
elif '/images/generations' in self.path: | |
if 'SD_WEBUI_URL' not in os.environ: | |
raise ServiceUnavailableError("Stable Diffusion not available. SD_WEBUI_URL not set.") | |
prompt = body['prompt'] | |
size = default(body, 'size', '1024x1024') | |
response_format = default(body, 'response_format', 'url') # or b64_json | |
n = default(body, 'n', 1) # ignore the batch limits of max 10 | |
response = OAIimages.generations(prompt=prompt, size=size, response_format=response_format, n=n) | |
self.return_json(response, no_debug=True) | |
elif '/embeddings' in self.path: | |
encoding_format = body.get('encoding_format', '') | |
input = body.get('input', body.get('text', '')) | |
if not input: | |
raise InvalidRequestError("Missing required argument input", params='input') | |
if type(input) is str: | |
input = [input] | |
response = OAIembeddings.embeddings(input, encoding_format) | |
self.return_json(response, no_debug=True) | |
elif '/moderations' in self.path: | |
input = body['input'] | |
if not input: | |
raise InvalidRequestError("Missing required argument input", params='input') | |
response = OAImoderations.moderations(input) | |
self.return_json(response, no_debug=True) | |
elif self.path == '/api/v1/token-count': | |
# NOT STANDARD. lifted from the api extension, but it's still very useful to calculate tokenized length client side. | |
response = token_count(body['prompt']) | |
self.return_json(response, no_debug=True) | |
elif self.path == '/api/v1/token/encode': | |
# NOT STANDARD. needed to support logit_bias, logprobs and token arrays for native models | |
encoding_format = body.get('encoding_format', '') | |
response = token_encode(body['input'], encoding_format) | |
self.return_json(response, no_debug=True) | |
elif self.path == '/api/v1/token/decode': | |
# NOT STANDARD. needed to support logit_bias, logprobs and token arrays for native models | |
encoding_format = body.get('encoding_format', '') | |
response = token_decode(body['input'], encoding_format) | |
self.return_json(response, no_debug=True) | |
else: | |
self.send_error(404) | |
def run_server(): | |
server_addr = ('0.0.0.0' if shared.args.listen else '127.0.0.1', params['port']) | |
server = ThreadingHTTPServer(server_addr, Handler) | |
if shared.args.share: | |
try: | |
from flask_cloudflared import _run_cloudflared | |
public_url = _run_cloudflared(params['port'], params['port'] + 1) | |
print(f'OpenAI compatible API ready at: OPENAI_API_BASE={public_url}/v1') | |
except ImportError: | |
print('You should install flask_cloudflared manually') | |
else: | |
print(f'OpenAI compatible API ready at: OPENAI_API_BASE=http://{server_addr[0]}:{server_addr[1]}/v1') | |
server.serve_forever() | |
def setup(): | |
Thread(target=run_server, daemon=True).start() | |