Spaces:
Sleeping
Sleeping
import torch | |
from modules import sampler_hijack, shared | |
from modules.text_generation import generate_reply | |
global_scores = None | |
def get_next_logits(prompt, state, use_samplers, previous): | |
if use_samplers: | |
state['max_new_tokens'] = 1 | |
state['auto_max_new_tokens'] = False | |
for _ in generate_reply(prompt, state): | |
pass | |
scores = sampler_hijack.global_scores[-1] | |
else: | |
tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda() | |
output = shared.model(input_ids=tokens) | |
scores = output['logits'][-1][-1] | |
probs = torch.softmax(scores, dim=-1, dtype=torch.float) | |
topk_values, topk_indices = torch.topk(probs, k=25, largest=True, sorted=True) | |
topk_values = [f"{float(i):.5f}" for i in topk_values] | |
tokens = [shared.tokenizer.decode(i) for i in topk_indices] | |
output = '' | |
for row in list(zip(topk_values, tokens)): | |
output += f"{row[0]} - {row[1]}\n" | |
return output, previous | |