Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,29 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Modell und Tokenizer laden
|
6 |
+
model = GPT2LMHeadModel.from_pretrained("Loewolf/GPT_1")
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained("Loewolf/GPT_1")
|
8 |
+
|
9 |
+
# Eine Funktion, um Fragen an GPT-2 zu stellen
|
10 |
+
def ask_gpt2(question, history):
|
11 |
+
input_ids = tokenizer.encode(history + question, return_tensors="pt")
|
12 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.bool)
|
13 |
+
|
14 |
+
# Antwort generieren
|
15 |
+
output = model.generate(input_ids, attention_mask=attention_mask)
|
16 |
+
reply = tokenizer.decode(output[0], skip_special_tokens=True)
|
17 |
+
new_history = history + "Nutzer: " + question + "\nLöwolf GPT: " + reply + "\n"
|
18 |
+
return new_history
|
19 |
+
|
20 |
+
# Erstellen des Gradio-Interfaces
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=ask_gpt2,
|
23 |
+
inputs=[gr.inputs.Textbox(lines=2, placeholder="Stelle deine Frage hier..."), gr.inputs.Textbox(lines=10, placeholder="Chat-Verlauf...")],
|
24 |
+
outputs=gr.outputs.Textbox(label="Antwort"),
|
25 |
+
layout="vertical"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Starten der Gradio-App
|
29 |
+
interface.launch()
|