from transformers import GPT2LMHeadModel, GPT2Tokenizer import torch import gradio as gr # Modell und Tokenizer laden model = GPT2LMHeadModel.from_pretrained("Loewolf/GPT_1") tokenizer = GPT2Tokenizer.from_pretrained("Loewolf/GPT_1") # Eine Funktion, um Fragen an GPT-2 zu stellen def ask_gpt2(question, history): input_ids = tokenizer.encode(history + question, return_tensors="pt") attention_mask = torch.ones(input_ids.shape, dtype=torch.bool) # Antwort generieren output = model.generate(input_ids, attention_mask=attention_mask) reply = tokenizer.decode(output[0], skip_special_tokens=True) new_history = history + "Nutzer: " + question + "\nLöwolf GPT: " + reply + "\n" return new_history # Erstellen des Gradio-Interfaces interface = gr.Interface( fn=ask_gpt2, inputs=[gr.inputs.Textbox(lines=2, placeholder="Stelle deine Frage hier..."), gr.inputs.Textbox(lines=10, placeholder="Chat-Verlauf...")], outputs=gr.outputs.Textbox(label="Antwort"), layout="vertical" ) # Starten der Gradio-App interface.launch()