LordFarquaad42 commited on
Commit
ab53869
1 Parent(s): 250dba9

added support for more gpt types

Browse files
Files changed (1) hide show
  1. app.py +24 -16
app.py CHANGED
@@ -16,29 +16,37 @@ DATA_AVAL: bool = schemer.count() > 0
16
  APP_NAME: str = "Groove-GPT"
17
 
18
  st.title(APP_NAME)
 
 
 
19
  st.write("Data Avaliable: ", DATA_AVAL)
 
20
  user_question: str = st.text_area("Enter your groovy questions here")
21
  access_key: str = st.text_input("Enter your gpt key here", type="password")
 
 
 
22
 
23
  if st.button('Query Database') & (access_key != "") & (user_question != ""):
24
  openai_client = OpenAI(api_key=access_key)
25
 
26
- st.header("Results")
27
- # Perform the Chromadb query.
28
- results = schemer.query(
29
- query_texts=[user_question],
30
- n_results=10,
31
- include = ['documents']
32
- )
33
- documents = results["documents"]
34
- response = openai_client.chat.completions.create(
35
- model="gpt-3.5-turbo",
36
- messages=[
37
- {"role": "system", "content": "You are an expert in functional programming in Scheme, with great knowledge on programming paradigms."},
38
- {"role": "user", "content": user_question},
39
- {"role": "assistant", "content": str(documents)},
40
- ]
41
- )
 
42
 
43
  st.write(response.choices[0].message.content)
44
 
 
16
  APP_NAME: str = "Groove-GPT"
17
 
18
  st.title(APP_NAME)
19
+ st.header("What is Groovy-GPT?")
20
+ st.write("Groovy-GPT is a RAG (Retrieval-Augmented Generation) model that uses ChromaDB to retrieve relevant documents and then uses OpenAI's models to generate a response.")
21
+ st.write("The model is trained on the MIT Scheme textbook and a handful of Discrete Math and Paradigms related content that Professor Gertner posted")
22
  st.write("Data Avaliable: ", DATA_AVAL)
23
+
24
  user_question: str = st.text_area("Enter your groovy questions here")
25
  access_key: str = st.text_input("Enter your gpt key here", type="password")
26
+ st.markdown("*For more information about how to get an access key, read [this article](https://platform.openai.com/api-keys).*", unsafe_allow_html=True)
27
+ gpt_type: str = st.selectbox(label="Choose GPT Type", options=["gpt-3.5-turbo", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-0125", "gpt-4-32k-0613", "gpt-4-0613", "gpt-4-0125-preview"], index=0)
28
+ st.markdown("*For more information about GPT types, read [this article](https://platform.openai.com/docs/models).*", unsafe_allow_html=True)
29
 
30
  if st.button('Query Database') & (access_key != "") & (user_question != ""):
31
  openai_client = OpenAI(api_key=access_key)
32
 
33
+ with st.spinner('Loading...'):
34
+ st.header("Results")
35
+ # Perform the Chromadb query.
36
+ results = schemer.query(
37
+ query_texts=[user_question],
38
+ n_results=10,
39
+ include = ['documents']
40
+ )
41
+ documents = results["documents"]
42
+ response = openai_client.chat.completions.create(
43
+ model="gpt-3.5-turbo",
44
+ messages=[
45
+ {"role": "system", "content": "You are an expert in functional programming in Scheme, with great knowledge on programming paradigms."},
46
+ {"role": "user", "content": user_question},
47
+ {"role": "assistant", "content": str(documents)},
48
+ ]
49
+ )
50
 
51
  st.write(response.choices[0].message.content)
52