import streamlit as st import chromadb from chromadb.utils import embedding_functions from sentence_transformers import SentenceTransformer from openai import OpenAI # CONSTANTS client = chromadb.PersistentClient(path="./chromadb_linux/") MODEL_NAME: str = "mixedbread-ai/mxbai-embed-large-v1" # ~ 0.5 gb COLLECTION_NAME: str = "scheme" EMBEDDING_FUNC = embedding_functions.SentenceTransformerEmbeddingFunction( model_name=MODEL_NAME ) schemer = client.get_collection( name=COLLECTION_NAME, embedding_function=EMBEDDING_FUNC, ) DATA_AVAL: bool = schemer.count() > 0 APP_NAME: str = "Groove-GPT" history = [] # INFO st.title(APP_NAME) st.header("What is Groovy-GPT?") st.write( "Groovy-GPT is a RAG (Retrieval-Augmented Generation) model that uses ChromaDB to retrieve relevant documents and then uses OpenAI's models to generate a response." ) st.write( "The model is trained on the MIT Scheme textbook and a handful of Discrete Math and Paradigms related content that Professor Troeger posted" ) st.write("Data Avaliable: ", DATA_AVAL) # INPUTS user_question: str = st.text_area("Enter your groovy questions here") remember_chat_history = st.toggle("Remember This Chat's History") temperature = st.slider( label="Creativity of Model", min_value=0.0, max_value=2.0, value=0.8 ) st.markdown("*High creativity will make it go crazy - keep it low*") num_samples = st.slider( label="Amount of References to Give to Model", min_value=10, max_value=100, value=10 ) st.markdown( "*High amount will make it slow and expensive (and may not be relevant) - keep it low*" ) access_key: str = st.text_input("Enter your gpt key here", type="password") st.markdown( "*For more information about how to get an access key, read [this article](https://platform.openai.com/api-keys). Make sure it has money in it ☠️*", unsafe_allow_html=True, ) gpt_type: str = st.selectbox( label="Choose GPT Type", options=[ "gpt-3.5-turbo", "gpt-3.5-turbo-1106", "gpt-3.5-turbo-0125", "gpt-4-32k-0613", "gpt-4-0613", "gpt-4-0125-preview", ], index=0, ) st.markdown( "*For more information about GPT types, read [this article](https://platform.openai.com/docs/models).*", unsafe_allow_html=True, ) st.divider() # ON BUTTON CLICK if st.button("Start Scheming") & (access_key != "") & (user_question != ""): openai_client = OpenAI(api_key=access_key) with st.spinner("Loading..."): # Perform the Chromadb query. results = schemer.query( query_texts=[user_question], n_results=num_samples, include=["documents"] ) documents = results["documents"] response = openai_client.chat.completions.create( model="gpt-3.5-turbo", messages=[ { "role": "system", "content": "You are an expert in functional programming in R5RS, with great knowledge on programming paradigms. You wish to teach the user everything you know about programming paradigms in R5RS - so you explain everything thoroughly. Surround Latex equations in dollar signs as such Inline equation: $equation$ & Display equation: $$equation$$. You will focus your examples to work exclusively in interative and recursive apporaches", }, {"role": "user", "content": user_question}, {"role": "assistant", "content": str(documents)}, {"role": "user", "content": f"Conversation History: {history}"}, ], temperature=temperature, stream=True, ) # history.append({user_question : response.choices[0].message.content} if remember_chat_history else {}) st.header("The Mega Schemer Says ...") text_placeholder = st.empty() content = "" for i, chunk in enumerate(response): if chunk.choices[0].delta.content is not None: # Append the chunk content to the string content += chunk.choices[0].delta.content text_placeholder.markdown(content) else: st.write("Please provide an input and (valid) API key")