import gradio as gr import os from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from dotenv import load_dotenv import torch load_dotenv() api_token = os.getenv("HF_TOKEN") list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] list_llm_simple = [os.path.basename(llm) for llm in list_llm] # Load and split PDF document def load_doc(list_file_path, chunk_size=512, chunk_overlap=64): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database with improved embedding model and parameters def create_db(splits, n_trees=5, search_k=100): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") vectordb = FAISS.from_documents(splits, embeddings, n_trees=n_trees, search_k=search_k) return vectordb # Query expansion and document filtering functions def expand_query(query): expanded_queries = [query, query + " additional term", query + " another term"] return expanded_queries def filter_documents(docs): filtered_docs = [doc for doc in docs if "important" in doc.page_content] return filtered_docs # Initialize langchain LLM chain with query expansion and document filtering def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm = HuggingFaceEndpoint( repo_id=llm_model, huggingfacehub_api_token=api_token, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, query_expansion=expand_query, document_filtering=filter_documents ) return qa_chain # Pre-process and vectorize local PDFs def pre_process_pdfs(directory="pdfs"): file_paths = [os.path.join(directory, f) for f in os.listdir(directory) if f.endswith('.pdf')] doc_splits = load_doc(file_paths) vector_db = create_db(doc_splits) return vector_db # Initialize database def initialize_database(list_file_obj, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] doc_splits = load_doc(list_file_path) vector_db = create_db(doc_splits) return vector_db, "Database created!" # Initialize LLM def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm_name = list_llm[llm_option] print("llm_name: ", llm_name) qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "QA chain initialized. Chatbot is ready!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history # Read persona from .md file def load_persona(file_path): with open(file_path, 'r') as file: return file.read() # Inject persona into response def persona_template(response_text, persona_text): return f"{persona_text}\n\n{response_text}" def conversation(qa_chain, message, history, persona_text): formatted_chat_history = format_chat_history(message, history) response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if "Helpful Answer:" in response_answer: response_answer = response_answer.split("Helpful Answer:")[-1] response_answer = persona_template(response_answer, persona_text) response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response2_page, response_source3, source3_page def upload_file(file_obj): list_file_path = [] for idx, file in enumerate(file_obj): file_path = file.name list_file_path.append(file_path) return list_file_path def demo(): persona_text = load_persona('persona.md') with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo: vector_db = gr.State(pre_process_pdfs("ILYA/pdfs")) # Pre-process PDFs on initialization with correct path qa_chain = gr.State() gr.HTML("