File size: 11,205 Bytes
794bf46
 
 
 
7cb93bd
794bf46
 
 
 
 
 
 
cdfe75a
794bf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6d4e36
c9b0019
794bf46
 
 
11a403f
794bf46
 
7cb93bd
 
d461b4f
794bf46
d461b4f
7cb93bd
11a403f
794bf46
7cb93bd
 
 
794bf46
 
11a403f
794bf46
 
d461b4f
 
 
 
 
 
 
 
 
 
 
 
794bf46
 
 
 
 
 
 
 
 
 
a849e1d
794bf46
 
 
 
 
 
 
 
 
 
 
 
 
 
d461b4f
 
794bf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d461b4f
 
794bf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a826c63
 
794bf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b0019
794bf46
 
 
 
 
 
 
 
 
c9b0019
 
 
39d2dd2
794bf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b0019
 
 
 
 
794bf46
 
 
 
 
 
 
c9b0019
794bf46
f8407d3
c9b0019
b622829
c9b0019
 
 
8265e15
c9b0019
 
794bf46
f8407d3
794bf46
f8407d3
c9b0019
f8407d3
 
 
c9b0019
 
 
 
 
794bf46
 
 
 
11a403f
794bf46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8407d3
794bf46
 
 
 
 
 
 
 
 
 
 
 
11a403f
794bf46
 
 
 
c9b0019
7cb93bd
794bf46
 
e722ae5
c9b0019
794bf46
7cb93bd
794bf46
 
c9b0019
39d2dd2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import os

scheduler = DPMSolverMultistepScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    trained_betas=None,
    prediction_type="epsilon",
    thresholding=False,
    algorithm_type="dpmsolver++",
    solver_type="midpoint",
    lower_order_final=True,
)

class Model:
    def __init__(self, name, path, prefix):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None

models = [
     Model("Stable-Diffusion-v1.4", "CompVis/stable-diffusion-v1-4", "The 1.4 version of official stable-diffusion"),
     Model("Waifu", "hakurei/waifu-diffusion", "anime style"),
]

last_mode = "txt2img"
current_model = models[0]
current_model_path = current_model.path

auth_token = os.getenv("HUGGING_FACE_HUB_TOKEN")

print(f"Is CUDA available: {torch.cuda.is_available()}")

if torch.cuda.is_available():
  vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16, use_auth_token=auth_token)
  for model in models:
    try:
        unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16, use_auth_token=auth_token)
        model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token)
        model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token)
    except:
        models.remove(model)
  pipe = models[0].pipe_t2i
  pipe = pipe.to("cuda")

else:
  vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", use_auth_token=auth_token)
  for model in models:
    try:
        unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", use_auth_token=auth_token)
        model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
        model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
    except:
        models.remove(model)
  pipe = models[0].pipe_t2i
  pipe = pipe.to("cpu")

device = "GPU πŸ”₯" if torch.cuda.is_available() else "CPU πŸ₯Ά"

def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):

  global current_model
  for model in models:
    if model.name == model_name:
      current_model = model
      model_path = current_model.path

  generator = torch.Generator('cuda' if torch.cuda.is_available() else 'cpu').manual_seed(seed) if seed != 0 else None

  if img is not None:
    return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
  else:
    return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)

def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        pipe.to("cpu")
        pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt
    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      # num_images_per_prompt=n_images,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator)
    
    return replace_nsfw_images(result)

def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        pipe.to("cpu")
        pipe = current_model.pipe_i2i
        
        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt = neg_prompt,
        # num_images_per_prompt=n_images,
        init_image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        #width = width,
        #height = height,
        generator = generator)
        
    return replace_nsfw_images(result)

def replace_nsfw_images(results):
    for i in range(len(results.images)):
      if results.nsfw_content_detected[i]:
        results.images[i] = Image.open("nsfw.png")
    return results.images[0]

css = """
  <style>
  .finetuned-diffusion-div {
      text-align: center;
      max-width: 700px;
      margin: 0 auto;
      font-family: 'IBM Plex Sans', sans-serif;
    }
    .finetuned-diffusion-div div {
      display: inline-flex;
      align-items: center;
      gap: 0.8rem;
      font-size: 1.75rem;
    }
    .finetuned-diffusion-div div h1 {
      font-weight: 900;
      margin-top: 15px;
      margin-bottom: 15px;
      text-align: center;
      line-height: 150%;
    }
    .finetuned-diffusion-div p {
      margin-bottom: 10px;
      font-size: 94%;
    }
    .finetuned-diffusion-div p a {
      text-decoration: underline;
    }
    .tabs {
      margin-top: 0px;
      margin-bottom: 0px;
    }
    #gallery {
      min-height: 20rem;
    }
    .container {
      max-width: 1000px;
      margin: auto;
      padding-top: 1.5rem;
    }
  </style>
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Stable-Diffusion with DPM-Solver (fastest sampler for diffusion models) </h1>
              </div>
              <br>
              <p>
              ❀️ Acknowledgement: Hardware resources of this demo are supported by HuggingFace πŸ€— . Many thanks for the help!
              </p>
              <br>
              <p>
               This is a demo of sampling by DPM-Solver with two variants of Stable Diffusion models, including <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4">Stable-Diffusion-v1.4</a> and <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>.
              </p>
              <br>
              <p>
               <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver</a> (Neurips 2022 Oral) is a fast high-order solver customized for diffusion ODEs, which can generate high-quality samples by diffusion models within only 10-25 steps. DPM-Solver has an analytical formulation and is very easy to use for all types of Gaussian diffusion models, and includes <a href="https://arxiv.org/abs/2010.02502">DDIM</a> as a first-order special case.
              </p>
              <p>
              We use <a href="https://github.com/huggingface/diffusers">Diffusers</a>  🧨  to implement this demo, which currently supports the multistep DPM-Solver scheduler. For more details of DPM-Solver with Diffusers, check <a href="https://github.com/huggingface/diffusers/pull/1132">this pull request</a>.
              </p>
              <br>
              <p>
              Currently, the default sampler of stable-diffusion is <a href="https://arxiv.org/abs/2202.09778">PNDM</a>, which needs 50 steps to generate high-quality samples. However, DPM-Solver can generate high-quality samples within only <span style="font-weight: bold;">20-25</span> steps, and for some samples even within <span style="font-weight: bold;">10-15</span> steps.
              </p>
              <br>
              <p>
               Running on <b>{device}</b>
              </p>
            </div>
        """
    )

    with gr.Row():
        
        with gr.Column(scale=55):
          with gr.Group():
              model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
              with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
                generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))


              image_out = gr.Image(height=512)
              # gallery = gr.Gallery(
              #     label="Generated images", show_label=False, elem_id="gallery"
              # ).style(grid=[1], height="auto")

        with gr.Column(scale=45):
          with gr.Tab("Options"):
            with gr.Group():
              neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")

              # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)

              with gr.Row():
                guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
                steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=100, step=1)

              with gr.Row():
                width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

              seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

          with gr.Tab("Image to image"):
              with gr.Group():
                image = gr.Image(label="Image", height=256, tool="editor", type="pil")
                strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    # model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)

    inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
    prompt.submit(inference, inputs=inputs, outputs=image_out)

    generate.click(inference, inputs=inputs, outputs=image_out)


    gr.Markdown('''
      Stable-diffusion Models by [CompVis](https://huggingface.co/CompVis) and [stabilityai](https://huggingface.co/stabilityai), Waifu-diffusion models by [@hakurei](https://huggingface.co/hakurei). Most of the code of this demo are copied from [@anzorq's fintuned-diffusion](https://huggingface.co/spaces/anzorq/finetuned_diffusion/tree/main) ❀️<br>
      Space by [Cheng Lu](https://github.com/LuChengTHU). [![Twitter Follow](https://img.shields.io/twitter/follow/ChengLu05671218?label=%40ChengLu&style=social)](https://twitter.com/ChengLu05671218)
        
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=LuChengTHU.dpmsolver_sdm)
    ''')

demo.queue(concurrency_count=1)
demo.launch(debug=False, share=False)