Spaces:
Runtime error
Runtime error
File size: 11,205 Bytes
794bf46 7cb93bd 794bf46 cdfe75a 794bf46 a6d4e36 c9b0019 794bf46 11a403f 794bf46 7cb93bd d461b4f 794bf46 d461b4f 7cb93bd 11a403f 794bf46 7cb93bd 794bf46 11a403f 794bf46 d461b4f 794bf46 a849e1d 794bf46 d461b4f 794bf46 d461b4f 794bf46 a826c63 794bf46 c9b0019 794bf46 c9b0019 39d2dd2 794bf46 c9b0019 794bf46 c9b0019 794bf46 f8407d3 c9b0019 b622829 c9b0019 8265e15 c9b0019 794bf46 f8407d3 794bf46 f8407d3 c9b0019 f8407d3 c9b0019 794bf46 11a403f 794bf46 f8407d3 794bf46 11a403f 794bf46 c9b0019 7cb93bd 794bf46 e722ae5 c9b0019 794bf46 7cb93bd 794bf46 c9b0019 39d2dd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import os
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
prediction_type="epsilon",
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
class Model:
def __init__(self, name, path, prefix):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Stable-Diffusion-v1.4", "CompVis/stable-diffusion-v1-4", "The 1.4 version of official stable-diffusion"),
Model("Waifu", "hakurei/waifu-diffusion", "anime style"),
]
last_mode = "txt2img"
current_model = models[0]
current_model_path = current_model.path
auth_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
print(f"Is CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16, use_auth_token=auth_token)
for model in models:
try:
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16, use_auth_token=auth_token)
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token)
except:
models.remove(model)
pipe = models[0].pipe_t2i
pipe = pipe.to("cuda")
else:
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", use_auth_token=auth_token)
for model in models:
try:
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", use_auth_token=auth_token)
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token)
except:
models.remove(model)
pipe = models[0].pipe_t2i
pipe = pipe.to("cpu")
device = "GPU π₯" if torch.cuda.is_available() else "CPU π₯Ά"
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator('cuda' if torch.cuda.is_available() else 'cpu').manual_seed(seed) if seed != 0 else None
if img is not None:
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
else:
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
pipe.to("cpu")
pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return replace_nsfw_images(result)
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
pipe.to("cpu")
pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
#width = width,
#height = height,
generator = generator)
return replace_nsfw_images(result)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
css = """
<style>
.finetuned-diffusion-div {
text-align: center;
max-width: 700px;
margin: 0 auto;
font-family: 'IBM Plex Sans', sans-serif;
}
.finetuned-diffusion-div div {
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
}
.finetuned-diffusion-div div h1 {
font-weight: 900;
margin-top: 15px;
margin-bottom: 15px;
text-align: center;
line-height: 150%;
}
.finetuned-diffusion-div p {
margin-bottom: 10px;
font-size: 94%;
}
.finetuned-diffusion-div p a {
text-decoration: underline;
}
.tabs {
margin-top: 0px;
margin-bottom: 0px;
}
#gallery {
min-height: 20rem;
}
.container {
max-width: 1000px;
margin: auto;
padding-top: 1.5rem;
}
</style>
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Stable-Diffusion with DPM-Solver (fastest sampler for diffusion models) </h1>
</div>
<br>
<p>
β€οΈ Acknowledgement: Hardware resources of this demo are supported by HuggingFace π€ . Many thanks for the help!
</p>
<br>
<p>
This is a demo of sampling by DPM-Solver with two variants of Stable Diffusion models, including <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4">Stable-Diffusion-v1.4</a> and <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>.
</p>
<br>
<p>
<a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver</a> (Neurips 2022 Oral) is a fast high-order solver customized for diffusion ODEs, which can generate high-quality samples by diffusion models within only 10-25 steps. DPM-Solver has an analytical formulation and is very easy to use for all types of Gaussian diffusion models, and includes <a href="https://arxiv.org/abs/2010.02502">DDIM</a> as a first-order special case.
</p>
<p>
We use <a href="https://github.com/huggingface/diffusers">Diffusers</a> 𧨠to implement this demo, which currently supports the multistep DPM-Solver scheduler. For more details of DPM-Solver with Diffusers, check <a href="https://github.com/huggingface/diffusers/pull/1132">this pull request</a>.
</p>
<br>
<p>
Currently, the default sampler of stable-diffusion is <a href="https://arxiv.org/abs/2202.09778">PNDM</a>, which needs 50 steps to generate high-quality samples. However, DPM-Solver can generate high-quality samples within only <span style="font-weight: bold;">20-25</span> steps, and for some samples even within <span style="font-weight: bold;">10-15</span> steps.
</p>
<br>
<p>
Running on <b>{device}</b>
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=100, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
# model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
prompt.submit(inference, inputs=inputs, outputs=image_out)
generate.click(inference, inputs=inputs, outputs=image_out)
gr.Markdown('''
Stable-diffusion Models by [CompVis](https://huggingface.co/CompVis) and [stabilityai](https://huggingface.co/stabilityai), Waifu-diffusion models by [@hakurei](https://huggingface.co/hakurei). Most of the code of this demo are copied from [@anzorq's fintuned-diffusion](https://huggingface.co/spaces/anzorq/finetuned_diffusion/tree/main) β€οΈ<br>
Space by [Cheng Lu](https://github.com/LuChengTHU). [![Twitter Follow](https://img.shields.io/twitter/follow/ChengLu05671218?label=%40ChengLu&style=social)](https://twitter.com/ChengLu05671218)
![visitors](https://visitor-badge.glitch.me/badge?page_id=LuChengTHU.dpmsolver_sdm)
''')
demo.queue(concurrency_count=1)
demo.launch(debug=False, share=False)
|