File size: 18,369 Bytes
6e7f13f a8e6836 6e7f13f ccd3b15 6e7f13f f076b93 6e7f13f e3f532e d2e7f6f ccd3b15 d4b74b3 6e7f13f ccd3b15 6e7f13f d4b74b3 619076c 6e7f13f efbe3a2 a8e6836 d4b74b3 6e7f13f 619076c d4b74b3 f076b93 d4b74b3 6e7f13f f076b93 e3f532e 6e7f13f e3f532e e0bd059 f076b93 ccd3b15 f076b93 6e7f13f 6997717 6e7f13f 2598c70 7486873 6e7f13f f1401e8 6e7f13f 0f845ae 6e7f13f 619076c 6e7f13f ccd3b15 6e7f13f 3ecf706 f1401e8 6e7f13f 106de15 f1401e8 6e7f13f 3ecf706 f1401e8 6e7f13f 3ecf706 f1401e8 6e7f13f 106de15 3ecf706 106de15 3ecf706 6e7f13f 2df5362 6e7f13f 49c2927 6e7f13f f0ace4b 7486873 6e7f13f 7486873 0f845ae 6e7f13f 6bd1314 f1401e8 6bd1314 63015b0 f0ace4b 6997717 6e7f13f f0ace4b d4b74b3 2598c70 6e7f13f 526c0b6 6e7f13f 6d48259 d4b74b3 6e7f13f 73b5d03 6e7f13f 73b5d03 6e7f13f a95a324 6e7f13f 73b5d03 90f9bb2 6e7f13f a95a324 6e7f13f ccd3b15 d311013 ccd3b15 ee4d672 ccd3b15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import gradio as gr
import gradio.helpers
from datasets import load_dataset
import base64
import re
import os
import random
import requests
import time
from PIL import Image
from io import BytesIO
from typing import Tuple
import user_history
from share_btn import community_icon_html, loading_icon_html, share_js
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
word_list_dataset = load_dataset("google/word-list-sd", data_files="list.txt", use_auth_token=True)
word_list = word_list_dataset["train"]['text']
#gradio.helpers.CACHED_FOLDER="/data/cache"
def infer(prompt, negative="low_quality", scale=7, style_name=None, profile: gr.OAuthProfile | None = None):
for filter in word_list:
if re.search(rf"\b{filter}\b", prompt):
raise gr.Error("Please try again with a different prompt")
seed = random.randint(0,4294967295)
prompt, negative = apply_style(style_name, prompt, negative)
images = []
url = os.getenv('JAX_BACKEND_URL')
payload = {'instances': [{ 'prompt': prompt, 'negative_prompt': negative, 'parameters':{ 'guidance_scale': scale, 'seed': seed } }] }
start_time = time.time()
images_request = requests.post(url, json = payload)
print(time.time() - start_time)
try:
json_data = images_request.json()
except requests.exceptions.JSONDecodeError:
raise gr.Error("SDXL did not return a valid result, try again")
for prediction in json_data["predictions"]:
for image in prediction["images"]:
image_b64 = (f"data:image/jpeg;base64,{image}")
images.append(image_b64)
if profile is not None: # avoid conversion on non-logged-in users
pil_image = Image.open(BytesIO(base64.b64decode(image)))
user_history.save_image( # save images + metadata to user history
label=prompt,
image=pil_image,
profile=profile,
metadata={
"prompt": prompt,
"negative_prompt": negative,
"guidance_scale": scale,
},
)
return images, gr.update(visible=True)
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.gradio-container {
max-width: 730px !important;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#prompt-container .form{
border-top-right-radius: 0;
border-bottom-right-radius: 0;
}
#gen-button{
border-top-left-radius:0;
border-bottom-left-radius:0;
}
#prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
#component-16{border-top-width: 1px!important;margin-top: 1em}
.image_duplication{position: absolute; width: 100px; left: 50px}
.tabitem{border: 0 !important}
"""
block = gr.Blocks()
examples = [
[
"A serious capybara at work, wearing a suit",
None,
None
],
[
'A Squirtle fine dining with a view to the London Eye',
None,
None
],
[
'A tamale food cart in front of a Japanese Castle',
None,
None
],
[
'a graffiti of a robot serving meals to people',
None,
None
],
[
'a beautiful cabin in Attersee, Austria, 3d animation style',
None,
None
],
]
with block:
gr.HTML(
"""
<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
Fast Stable Diffusion XL on TPU v5e ⚡
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
SDXL is a high quality text-to-image model from Stability AI. This demo is running on <a style="text-decoration: underline;" href="https://cloud.google.com/blog/products/compute/announcing-cloud-tpu-v5e-and-a3-gpus-in-ga">Google Cloud TPU v5e</a>, to achieve efficient and cost-effective inference of 1024×1024 images. <a href="https://hf.co/blog/sdxl_jax" target="_blank">How does it work?</a>
</p>
</div>
"""
)
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text-input",
)
btn = gr.Button("Generate", scale=0, elem_id="gen-button")
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery", grid=[2]
)
with gr.Group(elem_id="share-btn-container", visible=False) as community_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Accordion("Advanced settings", open=False):
style_selection = gr.Radio(
show_label=True, container=True, interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label='Image Style'
)
negative = gr.Textbox(
label="Enter your negative prompt",
show_label=False,
max_lines=1,
placeholder="Enter a negative prompt",
elem_id="negative-prompt-text-input",
)
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
)
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, negative, guidance_scale], outputs=[gallery, community_group], cache_examples=True, postprocess=False)
negative.submit(infer, inputs=[text, negative, guidance_scale, style_selection], outputs=[gallery, community_group], postprocess=False)
text.submit(infer, inputs=[text, negative, guidance_scale, style_selection], outputs=[gallery, community_group], postprocess=False)
btn.click(infer, inputs=[text, negative, guidance_scale, style_selection], outputs=[gallery, community_group], postprocess=False)
share_button.click(
None,
[],
[],
_js=share_js,
)
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">StabilityAI</a> - backend running JAX on TPUs due to generous support of <a href="https://sites.research.google/trc/about/" style="text-decoration: underline;" target="_blank">Google TRC program</a> - Gradio Demo by 🤗 Hugging Face - this is not an official Google Product
</p>
</div>
"""
)
with gr.Accordion(label="License", open=True):
gr.HTML(
"""<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md" style="text-decoration: underline;" target="_blank">Stability AI CreativeML Open RAIL++-M</a> license. The License allows users to take advantage of the model in a wide range of settings (including free use and redistribution) as long as they respect the specific use case restrictions outlined, which correspond to model applications the licensor deems ill-suited for the model or are likely to cause harm. For the full list of restrictions please <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. You can read more in the <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0" style="text-decoration: underline;" target="_blank">model card</a></p>
</div>
"""
)
with gr.Blocks(css=css) as block_with_history:
with gr.Tab("Demo"):
block.render()
with gr.Tab("Past generations"):
user_history.render()
block_with_history.queue(concurrency_count=8, max_size=10, api_open=False).launch(show_api=False)
#block_with_history.launch(server_name="0.0.0.0")
|