import gradio as gr from transformers import pipeline # Initialize pipelines crop_pipe = pipeline("image-classification", model="LucyintheSky/pose-estimation-crop-uncrop") pose_pipe = pipeline("image-classification", model="LucyintheSky/pose-estimation-front-side-back") name_pipe = pipeline("image-classification", model="LucyintheSky/model-prediction") def classify(img): # Classify image crop = crop_pipe(img) pose = pose_pipe(img) name = name_pipe(img) # Format results result = crop[0]['label'] + ' (' + str(int(float(crop[0]['score']) * 100)) + '%)\n' result += pose[0]['label'] + ' (' + str(int(float(pose[0]['score']) * 100)) + '%)\n' result += name[0]['label'] + ' (' + str(int(float(name[0]['score']) * 100)) + '%)' return result iface = gr.Interface(fn=classify, title='Product Photo Classifier', inputs=gr.Image(label='Image', type='filepath'), outputs=gr.Textbox(label='Classification'), examples=[['./images/1.jpg'],['./images/2.jpg'],['./images/3.jpg']], theme=gr.themes.Base(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.gray, neutral_hue=gr.themes.colors.slate, font=["avenir"])) iface.launch()