Ludvig Doeser
Added app
cc130eb
raw
history blame
521 Bytes
from transformers import pipeline
pipe = pipeline(model="LudvigDoeser/swedish_asr_model_training") # change to "your-username/the-name-you-picked"
import gradio as gr
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Swedish",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()