import gradio as gr import torch import soundfile as sf from snac import SNAC from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def find_last_instance_of_separator(lst, element=50258): reversed_list = lst[::-1] try: reversed_index = reversed_list.index(element) return len(lst) - 1 - reversed_index except ValueError: raise ValueError def reconstruct_tensors(flattened_output): def count_elements_between_hashes(lst): try: first_index = lst.index(50258) second_index = lst.index(50258, first_index + 1) return second_index - first_index - 1 except ValueError: return "List does not contain two '#' symbols" def remove_elements_before_hash(flattened_list): try: first_hash_index = flattened_list.index(50258) return flattened_list[first_hash_index:] except ValueError: return "List does not contain the symbol '#'" def list_to_torch_tensor(tensor1): tensor = torch.tensor(tensor1) tensor = tensor.unsqueeze(0) return tensor flattened_output = remove_elements_before_hash(flattened_output) last_index = find_last_instance_of_separator(flattened_output) flattened_output = flattened_output[:last_index] codes = [] tensor1 = [] tensor2 = [] tensor3 = [] tensor4 = [] n_tensors = count_elements_between_hashes(flattened_output) if n_tensors == 7: for i in range(0, len(flattened_output), 8): tensor1.append(flattened_output[i+1]) tensor2.append(flattened_output[i+2]) tensor3.append(flattened_output[i+3]) tensor3.append(flattened_output[i+4]) tensor2.append(flattened_output[i+5]) tensor3.append(flattened_output[i+6]) tensor3.append(flattened_output[i+7]) codes = [list_to_torch_tensor(tensor1).to(device), list_to_torch_tensor(tensor2).to(device), list_to_torch_tensor(tensor3).to(device)] if n_tensors == 15: for i in range(0, len(flattened_output), 16): tensor1.append(flattened_output[i+1]) tensor2.append(flattened_output[i+2]) tensor3.append(flattened_output[i+3]) tensor4.append(flattened_output[i+4]) tensor4.append(flattened_output[i+5]) tensor3.append(flattened_output[i+6]) tensor4.append(flattened_output[i+7]) tensor4.append(flattened_output[i+8]) tensor2.append(flattened_output[i+9]) tensor3.append(flattened_output[i+10]) tensor4.append(flattened_output[i+11]) tensor4.append(flattened_output[i+12]) tensor3.append(flattened_output[i+13]) tensor4.append(flattened_output[i+14]) tensor4.append(flattened_output[i+15]) codes = [list_to_torch_tensor(tensor1).to(device), list_to_torch_tensor(tensor2).to(device), list_to_torch_tensor(tensor3).to(device), list_to_torch_tensor(tensor4).to(device)] return codes def load_model(): tokenizer = AutoTokenizer.from_pretrained("Lwasinam/voicera-jenny-finetune") model = AutoModelForCausalLM.from_pretrained("Lwasinam/voicera-jenny-finetune").to(device) snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval() return model, tokenizer, snac_model def SpeechDecoder(codes, snac_model): codes = codes.squeeze(0).tolist() reconstructed_codes = reconstruct_tensors(codes) audio_hat = snac_model.to(device).decode(reconstructed_codes) audio_path = "reconstructed_audio.wav" sf.write(audio_path, audio_hat.squeeze().cpu().detach().numpy(), 24000) return audio_path def generate_audio(text, tokenizer, model, snac_model): output_codes = [] with torch.no_grad(): input_text = text input_ids = tokenizer(input_text, return_tensors='pt').to(device) output_codes = model.generate(input_ids['input_ids'], attention_mask=input_ids['attention_mask'], max_length=1024, num_beams=5, top_p=0.95, temperature=0.8, do_sample=True, repetition_penalty=2.0) audio_path = SpeechDecoder(output_codes, snac_model) return audio_path def main(text): model, tokenizer, snac_model = load_model() audio_path = generate_audio(text, tokenizer, model, snac_model) return audio_path # Define the Gradio interface iface = gr.Interface( fn=main, inputs='textbox', outputs="audio", title="Voicera TTS", description="Generate speech from text using Voicera TTS model." ) if __name__ == "__main__": iface.launch()