import utils from models import SynthesizerTrn import torch from torch import no_grad, LongTensor from text import text_to_sequence import gradio as gr import commons model_path = "./OUTPUT_MODEL/G_Amitaro.pth" config_path = "./OUTPUT_MODEL/config.json" length = 1.0 device = "cuda:0" if torch.cuda.is_available() else "cpu" def get_text(text, hps, is_symbol): text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = LongTensor(text_norm) return text_norm def get_vits_array(text): hps = utils.get_hparams_from_file(config_path) net_g = SynthesizerTrn( len(hps.symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model).to(device) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None) speaker_ids = hps.speakers #text = "[JA]" + text + "[JA]" speaker_id = 0 stn_tst = get_text(text, hps, False) with no_grad(): x_tst = stn_tst.unsqueeze(0).to(device) x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) sid = LongTensor([speaker_id]).to(device) audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.6, length_scale=1.0 / length)[0][0, 0].data.cpu().float().numpy() del stn_tst, x_tst, x_tst_lengths, sid return (hps.data.sampling_rate, audio) app = gr.Blocks() with app: gr.Markdown("# VITS-TTS-Japanese-Only-Amitaro\n\n" "Sample usage of Finetune model [Lycoris53/Vits-Japanese-Only-Amitaro](https://huggingface.co/Lycoris53/Vits-Japanese-Only-Amitaro) \n" "Base finetuning code is from [Plachtaa/VITS-fast-fine-tuning](https://github.com/Plachtaa/VITS-fast-fine-tuning)" ) with gr.Row(): with gr.Column(): textbox = gr.TextArea(label="Text", placeholder="Type your sentence here (Maximum 150 words)", value="おはようございます。") with gr.Column(): audio_output = gr.Audio(label="Output Audio") btn = gr.Button("Generate Voice!") btn.click(get_vits_array, inputs=[textbox], outputs=[audio_output]) app.queue(concurrency_count=3).launch()