Ali-C137's picture
Update app.py
4a9db12
import os
import time
import uuid
import random
import datetime
import pandas as pd
from typing import Any, Dict, List, Optional, Union
from pathlib import Path
import tempfile
import pyarrow as pa
import pyarrow.parquet as pq
import streamlit as st
import huggingface_hub as hf
from huggingface_hub import HfApi, login, CommitScheduler
from datasets import load_dataset
import openai
from openai import OpenAI
# File Path
# DATA_PATH = "Dr-En-space-test.csv"
# DATA_REPO = "M-A-D/dar-en-space-test"
DATA_REPO = "M-A-D/DarijaBridge"
api = hf.HfApi()
# access_token_write = "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"
# login(token=access_token_write)
# repo_id = "M-A-D/dar-en-space-test"
st.set_page_config(layout="wide")
# Initialize the ParquetScheduler
class ParquetScheduler(CommitScheduler):
"""
Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append`
call will result in 1 row in your final dataset.
```py
# Start scheduler
>>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset")
# Append some data to be uploaded
>>> scheduler.append({...})
>>> scheduler.append({...})
>>> scheduler.append({...})
```
The scheduler will automatically infer the schema from the data it pushes.
Optionally, you can manually set the schema yourself:
```py
>>> scheduler = ParquetScheduler(
... repo_id="my-parquet-dataset",
... schema={
... "prompt": {"_type": "Value", "dtype": "string"},
... "negative_prompt": {"_type": "Value", "dtype": "string"},
... "guidance_scale": {"_type": "Value", "dtype": "int64"},
... "image": {"_type": "Image"},
... },
... )
See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of
possible values.
"""
def __init__(
self,
*,
repo_id: str,
schema: Optional[Dict[str, Dict[str, str]]] = None,
every: Union[int, float] = 5,
path_in_repo: Optional[str] = "data",
repo_type: Optional[str] = "dataset",
revision: Optional[str] = None,
private: bool = False,
token: Optional[str] = None,
allow_patterns: Union[List[str], str, None] = None,
ignore_patterns: Union[List[str], str, None] = None,
hf_api: Optional[HfApi] = None,
) -> None:
super().__init__(
repo_id=repo_id,
folder_path="dummy", # not used by the scheduler
every=every,
path_in_repo=path_in_repo,
repo_type=repo_type,
revision=revision,
private=private,
token=token,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
hf_api=hf_api,
)
self._rows: List[Dict[str, Any]] = []
self._schema = schema
def append(self, row: Dict[str, Any]) -> None:
"""Add a new item to be uploaded."""
with self.lock:
self._rows.append(row)
def push_to_hub(self):
# Check for new rows to push
with self.lock:
rows = self._rows
self._rows = []
if not rows:
return
print(f"Got {len(rows)} item(s) to commit.")
# Load images + create 'features' config for datasets library
schema: Dict[str, Dict] = self._schema or {}
path_to_cleanup: List[Path] = []
for row in rows:
for key, value in row.items():
# Infer schema (for `datasets` library)
if key not in schema:
schema[key] = _infer_schema(key, value)
# Load binary files if necessary
if schema[key]["_type"] in ("Image", "Audio"):
# It's an image or audio: we load the bytes and remember to cleanup the file
file_path = Path(value)
if file_path.is_file():
row[key] = {
"path": file_path.name,
"bytes": file_path.read_bytes(),
}
path_to_cleanup.append(file_path)
# Complete rows if needed
for row in rows:
for feature in schema:
if feature not in row:
row[feature] = None
# Export items to Arrow format
table = pa.Table.from_pylist(rows)
# Add metadata (used by datasets library)
table = table.replace_schema_metadata(
{"huggingface": json.dumps({"info": {"features": schema}})}
)
# Write to parquet file
archive_file = tempfile.NamedTemporaryFile()
pq.write_table(table, archive_file.name)
# Upload
self.api.upload_file(
repo_id=self.repo_id,
repo_type=self.repo_type,
revision=self.revision,
path_in_repo=f"{uuid.uuid4()}.parquet",
path_or_fileobj=archive_file.name,
)
print(f"Commit completed.")
# Cleanup
archive_file.close()
for path in path_to_cleanup:
path.unlink(missing_ok=True)
# Define the ParquetScheduler instance with your repo details
scheduler = ParquetScheduler(repo_id=DATA_REPO)
# Function to append new translation data to the ParquetScheduler
def append_translation_data(original, translation, translated, corrected=False):
data = {
"original": original,
"translation": translation,
"translated": translated,
"corrected": corrected,
"timestamp": datetime.datetime.utcnow().isoformat(),
"id": str(uuid.uuid4()) # Unique identifier for each translation
}
scheduler.append(data)
# Load data
def load_data():
return pd.DataFrame(load_dataset(DATA_REPO,download_mode="force_redownload",split='train'))
#def save_data(data):
# data.to_csv(DATA_PATH, index=False)
# # to_save = datasets.Dataset.from_pandas(data)
# api.upload_file(
# path_or_fileobj="./Dr-En-space-test.csv",
# path_in_repo="Dr-En-space-test.csv",
# repo_id=DATA_REPO,
# repo_type="dataset",
#)
# # to_save.push_to_hub(DATA_REPO)
def skip_correction():
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
else:
st.session_state.orig_sentence = "No more sentences to be corrected"
st.session_state.orig_translation = "No more sentences to be corrected"
# st.title("""
# Darija Translation Corpus Collection
# **What This Space Is For:**
# - **Translating Darija to English:** Add your translations here.
# - **Correcting Translations:** Review and correct existing translations.
# - **Using GPT-4 for Auto-Translation:** Try auto-translating Darija sentences.
# - **Helping Develop Darija Language Resources:** Your translations make a difference.
# **How to Contribute:**
# - **Choose a Tab:** Translation, Correction, or Auto-Translate.
# - **Add or Correct Translations:** Use text areas to enter translations.
# - **Save Your Work:** Click 'Save' to submit.
# **Every Contribution Counts! Let's make Darija GREAT!**
# """)
st.title("""Darija Translation Corpus Collection""")
if "data" not in st.session_state:
st.session_state.data = load_data()
if "sentence" not in st.session_state:
untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
if untranslated_sentences:
st.session_state.sentence = random.choice(untranslated_sentences)
else:
st.session_state.sentence = "No more sentences to translate"
if "orig_translation" not in st.session_state:
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
noncorrected_translations = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['translation'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data.loc[st.session_state.data.sentence == st.session_state.orig_sentence]['translation'].values[0]
else:
st.session_state.orig_sentence = "No more sentences to be corrected"
st.session_state.orig_translation = "No more sentences to be corrected"
if "user_translation" not in st.session_state:
st.session_state.user_translation = ""
# with st.sidebar:
# st.subheader("About")
# st.markdown("""This is app is designed to collect Darija translation corpus.""")
with st.sidebar:
st.subheader("About")
st.markdown("""
### Darija Translation Corpus Collection
**What This Space Is For:**
- **Translating Darija to English:** Add your translations here.
- **Correcting Translations:** Review and correct existing translations.
- **Using GPT-4 for Auto-Translation:** Try auto-translating Darija sentences.
- **Helping Develop Darija Language Resources:** Your translations make a difference.
**How to Contribute:**
- **Choose a Tab:** Translation, Correction, or Auto-Translate.
- **Add or Correct Translations:** Use text areas to enter translations.
- **Save Your Work:** Click 'Save' to submit.
**Every Contribution Counts!**
**Let's make Darija GREAT!**
""")
tab1, tab2, tab3 = st.tabs(["Translation", "Correction", "Auto-Translate"])
with tab1:
with st.container():
st.subheader("Original Text:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.sentence), unsafe_allow_html=True)
st.subheader("Translation:")
st.session_state.user_translation = st.text_area("Enter your translation here:", value=st.session_state.user_translation)
if st.button("πŸ’Ύ Save"):
if st.session_state.user_translation:
# Append data to be saved
append_translation_data(
original=st.session_state.sentence,
translation=st.session_state.user_translation,
translated=True
)
st.session_state.user_translation = ""
# st.toast("Saved!", icon="πŸ‘")
st.success("Saved!")
# Update the sentence for the next iteration.
untranslated_sentences = st.session_state.data[st.session_state.data['translated'] == False]['sentence'].tolist()
if untranslated_sentences:
st.session_state.sentence = random.choice(untranslated_sentences)
else:
st.session_state.sentence = "No more sentences to translate"
time.sleep(0.5)
# Rerun the app
st.rerun()
with tab2:
with st.container():
st.subheader("Original Darija Text:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_sentence), unsafe_allow_html=True)
with st.container():
st.subheader("Original English Translation:")
st.write('<div style="height: 150px; overflow: auto; border: 2px solid #ddd; padding: 10px; border-radius: 5px;">{}</div>'.format(st.session_state.orig_translation), unsafe_allow_html=True)
st.subheader("Corrected Darija Translation:")
corrected_translation = st.text_area("Enter the corrected Darija translation here:")
if st.button("πŸ’Ύ Save Translation"):
if corrected_translation:
# Append data to be saved
append_translation_data(
original=st.session_state.orig_sentence,
translation=corrected_translation,
translated=True,
corrected=True
)
st.success("Saved!")
# Update the sentence for the next iteration.
noncorrected_sentences = st.session_state.data[(st.session_state.data.translated == True) & (st.session_state.data.corrected == False)]['sentence'].tolist()
# noncorrected_sentences = st.session_state.data[st.session_state.data['corrected'] == False]['sentence'].tolist()
if noncorrected_sentences:
st.session_state.orig_sentence = random.choice(noncorrected_sentences)
st.session_state.orig_translation = st.session_state.data[st.session_state.data.sentence == st.session_state.orig_sentence]['translation']
else:
st.session_state.orig_translation = "No more sentences to be corrected"
corrected_translation = "" # Reset the input value after saving
st.button("⏩ Skip to the Next Pair", key="skip_button", on_click=skip_correction)
with tab3:
st.subheader("Auto-Translate")
# User input for OpenAI API key
openai_api_key = st.text_input("Paste your OpenAI API key:")
# Slider for the user to choose the number of samples to translate
num_samples = st.slider("Select the number of samples to translate", min_value=1, max_value=100, value=10)
# Estimated cost display
cost = num_samples * 0.0012
st.write(f"The estimated cost for translating {num_samples} samples is: ${cost:.4f}")
if st.button("Do the MAGIC with Auto-Translate ✨"):
if openai_api_key:
openai.api_key = openai_api_key
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
)
# Get 10 samples from the dataset for translation
samples_to_translate = st.session_state.data.sample(10)['sentence'].tolist()
# # System prompt for translation assistant
# translation_prompt = """
# You are a helpful AI-powered translation assistant designed for users seeking reliable translation assistance. Your primary function is to provide context-aware translations from Moroccan Arabic (Darija) to English.
# """
# auto_translations = []
# for sentence in samples_to_translate:
# # Create messages for the chat model
# messages = [
# {"role": "system", "content": translation_prompt},
# {"role": "user", "content": f"Translate the following sentence to English: '{sentence}'"}
# ]
# System prompt for translation assistant
translation_system_prompt = """
You are a native speaker of both Moroccan Arabic (Darija) and English. You are an expert of translations from Moroccan Arabic (Darija) into English.
"""
auto_translations = []
for sentence in samples_to_translate:
# Create messages for the chat model
messages = [
{"role": "system", "content": translation_system_prompt},
{"role": "user", "content": f"Translate the following sentence from Moroccan Arabic (Darija) to English, only return the translated sentence: '{sentence}'"}
]
# Perform automatic translation using OpenAI GPT-3.5-turbo model
response = client.chat.completions.create(
# model="gpt-3.5-turbo",
model="gpt-4-1106-preview",
# api_key=openai_api_key,
messages=messages
)
# Extract the translated text from the response
translated_text = response.choices[0].message['content'].strip()
# Append the translated text to the list
auto_translations.append(translated_text)
# Update the dataset with auto-translations
st.session_state.data.loc[
st.session_state.data['sentence'].isin(samples_to_translate),
'translation'
] = auto_translations
# Append data to be saved
append_translation_data(
original=st.session_state.orig_sentence,
translation=corrected_translation,
translated=True,
corrected=True
)
st.success("Auto-Translations saved!")
else:
st.warning("Please paste your OpenAI API key.")