M2UGen-Demo / llama /llama.py
Atin Sakkeer Hussain
Add Model
795ce43
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
import torch
from torch import nn
from torch.nn import Embedding, Linear
import torch.nn.functional as F
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple
@dataclass
class ModelArgs:
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = -1 # defined later by tokenizer
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
ffn_dim_multiplier: Optional[float] = None
norm_eps: float = 1e-5
max_batch_size: int = 1
max_seq_len: int = 2048
w_bias: bool = True # use bias tuning
w_lora: bool = True # use lora tuning
lora_rank: int = 16
num_output_tokens: int = 128
output_dim_tokens: int = 768
num_gen_audio_tokens: int = 8
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.n_local_heads = args.n_heads
self.n_kv_heads = args.n_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = Linear(
args.dim,
args.n_heads * self.head_dim,
bias=args.w_bias
)
self.wk = Linear(
args.dim,
args.n_heads * self.head_dim,
bias=False
)
self.wv = Linear(
args.dim,
args.n_heads * self.head_dim,
bias=False
)
self.wo = Linear(
args.n_heads * self.head_dim,
args.dim,
bias=args.w_bias
)
if args.w_bias:
nn.init.constant_(self.wq.bias.data, 0)
nn.init.constant_(self.wo.bias.data, 0)
self.w_lora = args.w_lora
if args.w_lora:
self.lora_wq_l1 = Linear(args.dim, args.lora_rank, bias=False)
self.lora_wq_l2 = Linear(args.lora_rank, args.dim, bias=False)
self.lora_wk_l1 = Linear(args.dim, args.lora_rank, bias=False)
self.lora_wk_l2 = Linear(args.lora_rank, args.dim, bias=False)
self.lora_wv_l1 = Linear(args.dim, args.lora_rank, bias=False)
self.lora_wv_l2 = Linear(args.lora_rank, args.dim, bias=False)
self.lora_wo_l1 = Linear(args.dim, args.lora_rank, bias=False)
self.lora_wo_l2 = Linear(args.lora_rank, args.dim, bias=False)
nn.init.constant_(self.lora_wq_l2.weight.data, 0)
nn.init.constant_(self.lora_wk_l2.weight.data, 0)
nn.init.constant_(self.lora_wv_l2.weight.data, 0)
nn.init.constant_(self.lora_wo_l2.weight.data, 0)
self.cache_k = None
self.cache_v = None
self.gate = torch.nn.Parameter(torch.zeros(1, self.n_local_heads, 1, 1))
def train(self, mode: bool = True):
if mode:
self.cache_k = None
self.cache_v = None
else:
self.cache_k = torch.zeros(
(self.args.max_batch_size, self.args.max_seq_len, self.n_local_heads, self.head_dim)
).cuda()
self.cache_v = torch.zeros(
(self.args.max_batch_size, self.args.max_seq_len, self.n_local_heads, self.head_dim)
).cuda()
return super().train(mode)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor],
adapter=None):
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
if self.w_lora:
xq = xq + self.lora_wq_l2(self.lora_wq_l1(x))
xk = xk + self.lora_wk_l2(self.lora_wk_l1(x))
xv = xv + self.lora_wv_l2(self.lora_wv_l1(x))
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
if not self.training:
self.cache_k = self.cache_k.to(xq)
self.cache_v = self.cache_v.to(xq)
self.cache_k[:bsz, start_pos: start_pos + seqlen] = xk
self.cache_v[:bsz, start_pos: start_pos + seqlen] = xv
keys = self.cache_k[:bsz, : start_pos + seqlen]
values = self.cache_v[:bsz, : start_pos + seqlen]
else:
assert start_pos == 0
keys = xk
values = xv
if adapter is not None:
adapter_len = adapter.shape[1]
adapter_v = self.wv(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
adapter_v = adapter_v.transpose(1, 2)
if adapter_len > 1:
adapter_k = self.wk(adapter).view(bsz, adapter_len, self.n_local_heads, self.head_dim)
adapter_k = adapter_k.transpose(1, 2)
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask # (bs, n_local_heads, slen, cache_len + slen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim)
if adapter is not None:
if adapter_len > 1:
adapter_scores = torch.matmul(xq, adapter_k.transpose(2, 3)) / math.sqrt(self.head_dim)
adapter_scores = self.gate.tanh() * F.softmax(adapter_scores.float(), dim=-1).type_as(xq)
output = output + torch.matmul(adapter_scores, adapter_v)
else:
output = output + self.gate.tanh() * adapter_v
output = output.transpose(
1, 2
).contiguous().view(bsz, seqlen, -1)
if self.w_lora:
return self.wo(output) + self.lora_wo_l2(self.lora_wo_l1(output))
else:
return self.wo(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
args: ModelArgs,
ffn_dim_multiplier: Optional[float]
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = Linear(
dim, hidden_dim, bias=args.w_bias
)
self.w2 = Linear(
hidden_dim, dim, bias=args.w_bias
)
self.w3 = Linear(
dim, hidden_dim, bias=args.w_bias
)
if args.w_bias:
nn.init.constant_(self.w1.bias.data, 0)
nn.init.constant_(self.w2.bias.data, 0)
nn.init.constant_(self.w3.bias.data, 0)
self.w_lora = args.w_lora
if args.w_lora:
self.lora_w1_l1 = Linear(dim, args.lora_rank, bias=False)
self.lora_w1_l2 = Linear(args.lora_rank, hidden_dim, bias=False)
self.lora_w2_l1 = Linear(hidden_dim, args.lora_rank, bias=False)
self.lora_w2_l2 = Linear(args.lora_rank, dim, bias=False)
self.lora_w3_l1 = Linear(dim, args.lora_rank, bias=False)
self.lora_w3_l2 = Linear(args.lora_rank, hidden_dim, bias=False)
nn.init.constant_(self.lora_w1_l2.weight.data, 0)
nn.init.constant_(self.lora_w2_l2.weight.data, 0)
nn.init.constant_(self.lora_w3_l2.weight.data, 0)
def forward(self, x):
if self.w_lora:
out = F.silu(self.w1(x) + self.lora_w1_l2(self.lora_w1_l1(x))) * (
self.w3(x) + self.lora_w3_l2(self.lora_w3_l1(x)))
return self.w2(out) + self.lora_w2_l2(self.lora_w2_l1(out))
else:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim, hidden_dim=4 * args.dim, multiple_of=args.multiple_of,
ffn_dim_multiplier=args.ffn_dim_multiplier, args=args
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor],
prompt=None):
h = x + self.attention.forward(self.attention_norm(x), start_pos, freqs_cis, mask, prompt)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = Embedding(
params.vocab_size, params.dim
)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = Linear(
params.dim, params.vocab_size, bias=False
)
self.freqs_cis = precompute_freqs_cis(
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2
)
@torch.inference_mode()
def forward(self, tokens: torch.Tensor, start_pos: int):
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
self.freqs_cis = self.freqs_cis.to(h.device)
freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen]
mask = None
if seqlen > 1:
mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
for layer in self.layers:
h = layer(h, start_pos, freqs_cis, mask)
h = self.norm(h)
output = self.output(h) # only compute last logits
return output.float()