File size: 14,001 Bytes
5436b58 10c79ab 5436b58 7824fd4 8ec7aea 5436b58 655ce6f 5436b58 10c79ab 5436b58 10c79ab 5436b58 10c79ab 5436b58 7824fd4 45c5cd3 5436b58 10c79ab 5436b58 b79dfdb 10c79ab 8ec7aea 843fd20 5436b58 10c79ab 7824fd4 5436b58 7824fd4 10c79ab 7824fd4 5436b58 10c79ab 5436b58 10c79ab 5436b58 18949ce 5436b58 10c79ab 5436b58 781d7f4 5436b58 10c79ab 5436b58 4466817 10c79ab 4466817 1b8a444 4466817 10c79ab 1b8a444 10c79ab 1b8a444 4466817 18949ce 4466817 1b8a444 4466817 10c79ab 5436b58 18949ce 5436b58 4466817 5436b58 10c79ab 5436b58 10c79ab 5436b58 18949ce 5857783 5436b58 18949ce 1b8a444 5436b58 10c79ab 5436b58 1b8a444 5436b58 10c79ab 5436b58 5a6d7ea 5436b58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import argparse
import gradio as gr
import numpy as np
import torch
import torchvision.transforms as T
from clip_interrogator import Config, Interrogator
from diffusers import StableDiffusionPipeline
from transformers import file_utils
from ditail import DitailDemo, seed_everything
BASE_MODEL = {
'sd1.5': 'runwayml/stable-diffusion-v1-5',
'realistic vision': 'stablediffusionapi/realistic-vision-v51',
'pastel mix (anime)': 'stablediffusionapi/pastel-mix-stylized-anime',
# 'chaos (abstract)': 'MAPS-research/Chaos3.0',
}
# LoRA trigger words
LORA_TRIGGER_WORD = {
'none': [],
'film': ['film overlay', 'film grain'],
'snow': ['snow'],
'flat': ['sdh', 'flat illustration'],
'minecraft': ['minecraft square style', 'cg, computer graphics'],
'animeoutline': ['lineart', 'monochrome'],
'impressionism': ['impressionist', 'in the style of Monet'],
'pop': ['POP ART'],
'shinkai_makoto': ['shinkai makoto', 'kimi no na wa.', 'tenki no ko', 'kotonoha no niwa'],
}
METADATA_TO_SHOW = ['inv_model', 'spl_model', 'lora', 'lora_scale', 'inv_steps', 'spl_steps', 'pos_prompt', 'alpha', 'neg_prompt', 'beta', 'omega']
class WebApp():
def __init__(self, debug_mode=False):
if torch.cuda.is_available():
self.device = "cuda"
else:
self.device = "cpu"
self.args_base = {
"seed": 42,
"device": self.device,
"output_dir": "output_demo",
"caption_model_name": "blip-large",
"clip_model_name": "ViT-L-14/openai",
"inv_model": "stablediffusionapi/realistic-vision-v51",
"spl_model": "runwayml/stable-diffusion-v1-5",
"inv_steps": 50,
"spl_steps": 50,
"img": None,
"pos_prompt": '',
"neg_prompt": 'worst quality, blurry, NSFW',
"alpha": 3.0,
"beta": 0.5,
"omega": 15,
"mask": None,
"lora": "none",
"lora_dir": "./ditail/lora",
"lora_scale": 0.7,
"no_injection": False,
}
self.args_input = {} # for gr.components only
self.gr_loras = list(LORA_TRIGGER_WORD.keys())
self.gtag = os.environ.get('GTag')
self.ga_script = f"""
<script async src="https://www.googletagmanager.com/gtag/js?id={self.gtag}"></script>
"""
self.ga_load = f"""
function() {{
window.dataLayer = window.dataLayer || [];
function gtag(){{dataLayer.push(arguments);}}
gtag('js', new Date());
gtag('config', '{self.gtag}');
}}
"""
# # pre-download base model for better user experience
# self._preload_pipeline()
self.debug_mode = debug_mode # turn off clip interrogator when debugging for faster building speed
if not self.debug_mode and self.device=="cuda":
self.init_interrogator()
def init_interrogator(self):
cache_path = os.environ.get('HF_HOME')
# print(f"Intended cache dir: {cache_path}")
config = Config()
config.cache_path = cache_path
config.clip_model_path = cache_path
config.clip_model_name = self.args_base['clip_model_name']
config.caption_model_name = self.args_base['caption_model_name']
self.ci = Interrogator(config)
self.ci.config.chunk_size = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
self.ci.config.flavor_intermediate_count = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
# print(f"HF cache dir: {file_utils.default_cache_path}")
def _preload_pipeline(self):
for model in BASE_MODEL.values():
pipe = StableDiffusionPipeline.from_pretrained(
model, torch_dtype=torch.float16
).to(self.args_base['device'])
pipe = None
def title(self):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1 >Diffusion Cocktail 🍸: Fused Generation from Diffusion Models</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin: 20px; gap: 10px;">
<a class="flex-item" href="https://arxiv.org/abs/2312.08873" target="_blank">
<img src="https://img.shields.io/badge/arXiv-Paper-darkred.svg" alt="arXiv Paper">
</a>
<a class="flex-item" href="https://MAPS-research.github.io/Ditail" target="_blank">
<img src="https://img.shields.io/badge/Website-Ditail-yellow.svg" alt="Project Page">
</a>
<a class="flex-item" href="https://github.com/MAPS-research/Ditail" target="_blank">
<img src="https://img.shields.io/badge/Github-Code-green.svg" alt="GitHub Code">
</a>
</div>
</div>
</div>
"""
)
def device_requirements(self):
gr.Markdown(
"""
<center>
<h2>
Attention: The demo doesn't work in this space running on CPU only. \
Please duplicate and upgrade to a private "T4 medium" GPU.
</h2>
</center>
"""
)
gr.DuplicateButton(size='lg', scale=1, variant='primary')
def get_image(self):
self.args_input['img'] = gr.Image(label='content image', type='pil', show_share_button=False, elem_classes="input_image")
def get_prompts(self):
generate_prompt = gr.Checkbox(label='generate prompt with clip', value=True)
self.args_input['pos_prompt'] = gr.Textbox(label='prompt')
# event listeners
self.args_input['img'].upload(self._interrogate_image, inputs=[self.args_input['img'], generate_prompt], outputs=[self.args_input['pos_prompt']])
generate_prompt.change(self._interrogate_image, inputs=[self.args_input['img'], generate_prompt], outputs=[self.args_input['pos_prompt']])
def _interrogate_image(self, image, generate_prompt):
if hasattr(self, 'ci') and image is not None and generate_prompt:
return self.ci.interrogate_fast(image).split(',')[0].replace('arafed', '')
else:
return ''
def get_base_model(self):
self.args_input['spl_model'] = gr.Radio(choices=list(BASE_MODEL.keys()), value=list(BASE_MODEL.keys())[2], label='target base model')
def get_lora(self, num_cols=3):
self.args_input['lora'] = gr.State('none')
self.lora_gallery = gr.Gallery(label='target LoRA (optional)', columns=num_cols, value=[(os.path.join(self.args_base['lora_dir'], f"{lora}.jpeg"), lora) for lora in self.gr_loras], allow_preview=False, show_share_button=False)
self.lora_gallery.select(self._update_lora_selection, inputs=[], outputs=[self.args_input['lora']])
def _update_lora_selection(self, selected_state: gr.SelectData):
return self.gr_loras[selected_state.index]
def get_params(self):
with gr.Row():
with gr.Column():
self.args_input['inv_model'] = gr.Radio(choices=list(BASE_MODEL.keys()), value=list(BASE_MODEL.keys())[1], label='inversion base model')
self.args_input['neg_prompt'] = gr.Textbox(label='negative prompt', value=self.args_base['neg_prompt'])
self.args_input['alpha'] = gr.Number(label='positive prompt scaling weight (alpha)', value=self.args_base['alpha'], interactive=True)
self.args_input['beta'] = gr.Number(label='negative prompt scaling weight (beta)', value=self.args_base['beta'], interactive=True)
with gr.Column():
self.args_input['omega'] = gr.Slider(label='cfg', value=self.args_base['omega'], maximum=25, interactive=True)
self.args_input['inv_steps'] = gr.Slider(minimum=1, maximum=100, label='edit steps', interactive=True, value=self.args_base['inv_steps'], step=1)
self.args_input['spl_steps'] = gr.Slider(minimum=1, maximum=100, label='sample steps', interactive=False, value=self.args_base['spl_steps'], step=1, visible=False)
# sync inv_steps with spl_steps
self.args_input['inv_steps'].change(lambda x: x, inputs=self.args_input['inv_steps'], outputs=self.args_input['spl_steps'])
self.args_input['lora_scale'] = gr.Slider(minimum=0, maximum=1, label='LoRA scale', value=0.7)
self.args_input['seed'] = gr.Number(label='seed', value=self.args_base['seed'], interactive=True, precision=0, step=1)
def run_ditail(self, *values):
gr_args = self.args_base.copy()
# print(self.args_input.keys())
for k, v in zip(list(self.args_input.keys()), values):
gr_args[k] = v
# quick fix for example
gr_args['lora'] = 'none' if not isinstance(gr_args['lora'], str) else gr_args['lora']
print('selected lora: ', gr_args['lora'])
# map inversion model to url
gr_args['pos_prompt'] = ', '.join(LORA_TRIGGER_WORD.get(gr_args['lora'], [])+[gr_args['pos_prompt']])
gr_args['inv_model'] = BASE_MODEL[gr_args['inv_model']]
gr_args['spl_model'] = BASE_MODEL[gr_args['spl_model']]
print('selected model: ', gr_args['inv_model'], gr_args['spl_model'])
seed_everything(gr_args['seed'])
ditail = DitailDemo(gr_args)
args_to_show = {}
for key in METADATA_TO_SHOW:
args_to_show[key] = gr_args[key]
img = ditail.run_ditail()
# reset ditail to free memory usage
ditail = None
return img, args_to_show
# def run_example(self, img, prompt, inv_model, spl_model, lora):
# return self.run_ditail(img, prompt, spl_model, gr.State(lora), inv_model)
def run_example(self, *values):
gr_args = self.args_base.copy()
for k, v in zip(['img', 'pos_prompt', 'inv_model', 'spl_model', 'lora'], values):
gr_args[k] = v
args_to_show = {}
for key in METADATA_TO_SHOW:
args_to_show[key] = gr_args[key]
img = os.path.join(os.path.dirname(__file__), "example", "Cocktail_impression.jpg")
# self.lora_gallery.selected_index = self.gr_loras.index(gr_args['lora'])
return img, args_to_show
def show_credits(self):
gr.Markdown(
"""
### Model Credits
* Diffusion Models are downloaded from [huggingface](https://huggingface.co): [stable diffusion 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5), [realistic vision](https://huggingface.co/stablediffusionapi/realistic-vision-v51), [pastel mix](https://huggingface.co/stablediffusionapi/pastel-mix-stylized-anime)
* LoRA Models are downloaded from [civitai](https://civitai.com) and [liblib](https://www.liblib.art): [film](https://civitai.com/models/90393/japan-vibes-film-color), [snow](https://www.liblib.art/modelinfo/f732b23b02f041bdb7f8f3f8a256ca8b), [flat](https://www.liblib.art/modelinfo/76dcb8b59d814960b0244849f2747a15), [minecraft](https://civitai.com/models/113741/minecraft-square-style), [animeoutline](https://civitai.com/models/16014/anime-lineart-manga-like-style), [impressionism](https://civitai.com/models/113383/y5-impressionism-style), [pop](https://civitai.com/models/161450?modelVersionId=188417), [shinkai_makoto](https://civitai.com/models/10626?modelVersionId=12610)
"""
)
def ui(self):
with gr.Blocks(css='.input_image img {object-fit: contain;}', head=self.ga_script) as demo:
self.title()
if self.device == "cpu":
self.device_requirements()
with gr.Row():
self.get_image()
with gr.Column():
self.get_prompts()
self.get_base_model()
self.get_lora(num_cols=3)
submit_btn = gr.Button("Generate", variant='primary')
if self.device == 'cpu':
submit_btn.variant='secondary'
with gr.Accordion("advanced options", open=False):
self.get_params()
with gr.Row():
with gr.Column():
output_image = gr.Image(label="output image")
metadata = gr.JSON(label='metadata')
submit_btn.click(self.run_ditail,
inputs=list(self.args_input.values()),
outputs=[output_image, metadata],
scroll_to_output=True,
)
with gr.Row():
cache_examples = not self.debug_mode
gr.Examples(
examples=[[os.path.join(os.path.dirname(__file__), "example", "Cocktail.jpg"), 'a glass of a cocktail with a lime wedge on it', list(BASE_MODEL.keys())[1], list(BASE_MODEL.keys())[1], 'impressionism']],
inputs=[self.args_input['img'], self.args_input['pos_prompt'], self.args_input['inv_model'], self.args_input['spl_model'], gr.Textbox(label='LoRA', visible=False), ],
fn = self.run_example,
outputs=[output_image, metadata],
run_on_click=True,
# cache_examples=cache_examples,
)
self.show_credits()
demo.load(None, js=self.ga_load)
return demo
app = WebApp(debug_mode=False)
demo = app.ui()
if __name__ == "__main__":
demo.launch(share=True)
|