init
Browse files
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as T
|
7 |
+
|
8 |
+
from clip_interrogator import Config, Interrogator
|
9 |
+
|
10 |
+
from ditail import DitailDemo, seed_everything
|
11 |
+
|
12 |
+
BASE_MODEL = {
|
13 |
+
'sd1.5': 'runwayml/stable-diffusion-v1-5',
|
14 |
+
# 'sd1.5': './ditail/model/stable-diffusion-v1-5'
|
15 |
+
'realistic vision': 'stablediffusionapi/realistic-vision-v51',
|
16 |
+
'pastel mix (anime)': 'stablediffusionapi/pastel-mix-stylized-anime',
|
17 |
+
'chaos (abstract)': 'MAPS-research/Chaos3.0',
|
18 |
+
}
|
19 |
+
|
20 |
+
# LoRA trigger words
|
21 |
+
LORA_TRIGGER_WORD = {
|
22 |
+
'none': [],
|
23 |
+
'film': ['film overlay', 'film grain'],
|
24 |
+
'snow': ['snow'],
|
25 |
+
'flat': ['sdh', 'flat illustration'],
|
26 |
+
'minecraft': ['minecraft square style', 'cg, computer graphics'],
|
27 |
+
'animeoutline': ['lineart', 'monochrome'],
|
28 |
+
# 'caravaggio': ['oil painting', 'in the style of caravaggio'],
|
29 |
+
'impressionism': ['impressionist', 'in the style of Monet'],
|
30 |
+
'pop': ['POP ART'],
|
31 |
+
'shinkai_makoto': ['shinkai makoto', 'kimi no na wa.', 'tenki no ko', 'kotonoha no niwa'],
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
class WebApp():
|
36 |
+
def __init__(self, debug_mode=False):
|
37 |
+
self.args_base = {
|
38 |
+
"seed": 42,
|
39 |
+
"device": "cuda",
|
40 |
+
"output_dir": "output_demo",
|
41 |
+
"caption_model_name": "blip-large",
|
42 |
+
"clip_model_name": "ViT-L-14/openai",
|
43 |
+
"inv_model": "stablediffusionapi/realistic-vision-v51",
|
44 |
+
"spl_model": "runwayml/stable-diffusion-v1-5",
|
45 |
+
"inv_steps": 50,
|
46 |
+
"spl_steps": 50,
|
47 |
+
"img": None,
|
48 |
+
"pos_prompt": '',
|
49 |
+
"neg_prompt": 'worst quality, blurry, NSFW',
|
50 |
+
"alpha": 3.0,
|
51 |
+
"beta": 0.5,
|
52 |
+
"omega": 15,
|
53 |
+
"mask": None,
|
54 |
+
"lora": "none",
|
55 |
+
"lora_dir": "./ditail/lora",
|
56 |
+
"lora_scale": 0.7,
|
57 |
+
"no_injection": False,
|
58 |
+
}
|
59 |
+
|
60 |
+
self.args_input = {} # for gr.components only
|
61 |
+
self.gr_loras = list(LORA_TRIGGER_WORD.keys())
|
62 |
+
|
63 |
+
self.gtag = os.environ.get('GTag')
|
64 |
+
|
65 |
+
self.ga_script = f"""
|
66 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id={self.gtag}"></script>
|
67 |
+
"""
|
68 |
+
self.ga_load = f"""
|
69 |
+
function() {{
|
70 |
+
window.dataLayer = window.dataLayer || [];
|
71 |
+
function gtag(){{dataLayer.push(arguments);}}
|
72 |
+
gtag('js', new Date());
|
73 |
+
|
74 |
+
gtag('config', '{self.gtag}');
|
75 |
+
}}
|
76 |
+
"""
|
77 |
+
|
78 |
+
self.debug_mode = debug_mode # turn off clip interrogator when debugging for faster building speed
|
79 |
+
if not self.debug_mode:
|
80 |
+
self.init_interrogator()
|
81 |
+
|
82 |
+
|
83 |
+
def init_interrogator(self):
|
84 |
+
# init clip interrogator
|
85 |
+
config = Config()
|
86 |
+
config.clip_model_name = self.args_base['clip_model_name']
|
87 |
+
config.caption_model_name = self.args_base['caption_model_name']
|
88 |
+
self.ci = Interrogator(config)
|
89 |
+
self.ci.config.chunk_size = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
|
90 |
+
self.ci.config.flavor_intermediate_count = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
|
91 |
+
|
92 |
+
def title(self):
|
93 |
+
gr.HTML(
|
94 |
+
"""
|
95 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
96 |
+
<div>
|
97 |
+
<h1 >Diffusion Cocktail 🍸: Fused Generation from Diffusion Models</h1>
|
98 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; margin: 20px; gap: 10px;>
|
99 |
+
<a class="flex-item" href="https://arxiv.org/abs/your-arxiv-id" target="_blank">
|
100 |
+
<img src="https://img.shields.io/badge/arXiv-paper-darkred.svg" alt="arXiv Paper">
|
101 |
+
</a>
|
102 |
+
<a class="flex-item" href="https://MAPS-research.github.io/Ditail" target="_blank">
|
103 |
+
<img src="https://img.shields.io/badge/Project_Page-Diffusion_Cocktail-yellow.svg" alt="Project Page">
|
104 |
+
</a>
|
105 |
+
<a class="flex-item" href="https://github.com/MAPS-research/Ditail" target="_blank">
|
106 |
+
<img src="https://img.shields.io/badge/Github-Code-green.svg" alt="GitHub Code">
|
107 |
+
</a>
|
108 |
+
</div>
|
109 |
+
</div>
|
110 |
+
</div>
|
111 |
+
"""
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
def get_image(self):
|
116 |
+
self.args_input['img'] = gr.Image(label='content image', type='pil', show_share_button=False, elem_classes="input_image")
|
117 |
+
|
118 |
+
def get_prompts(self):
|
119 |
+
# with gr.Row():
|
120 |
+
generate_prompt = gr.Checkbox(label='generate prompt with clip', value=True)
|
121 |
+
self.args_input['pos_prompt'] = gr.Textbox(label='prompt')
|
122 |
+
|
123 |
+
|
124 |
+
# event listeners
|
125 |
+
self.args_input['img'].upload(self._interrogate_image, inputs=[self.args_input['img'], generate_prompt], outputs=[self.args_input['pos_prompt']])
|
126 |
+
generate_prompt.change(self._interrogate_image, inputs=[self.args_input['img'], generate_prompt], outputs=[self.args_input['pos_prompt']])
|
127 |
+
|
128 |
+
|
129 |
+
def _interrogate_image(self, image, generate_prompt):
|
130 |
+
# self.init_interrogator()
|
131 |
+
if hasattr(self, 'ci') and generate_prompt:
|
132 |
+
return self.ci.interrogate_fast(image).split(',')[0].replace('arafed', '')
|
133 |
+
else:
|
134 |
+
return ''
|
135 |
+
|
136 |
+
|
137 |
+
def get_base_model(self):
|
138 |
+
self.args_input['spl_model'] = gr.Radio(choices=list(BASE_MODEL.keys()), value=list(BASE_MODEL.keys())[0], label='target base model')
|
139 |
+
|
140 |
+
def get_lora(self, num_cols=3):
|
141 |
+
self.args_input['lora'] = gr.State('none')
|
142 |
+
lora_gallery = gr.Gallery(label='target LoRA (optional)', columns=num_cols, value=[(os.path.join(self.args_base['lora_dir'], f"{lora}.jpeg"), lora) for lora in self.gr_loras], allow_preview=False, show_share_button=False, selected_index=0)
|
143 |
+
lora_gallery.select(self._update_lora_selection, inputs=[], outputs=[self.args_input['lora']])
|
144 |
+
|
145 |
+
def _update_lora_selection(self, selected_state: gr.SelectData):
|
146 |
+
return self.gr_loras[selected_state.index]
|
147 |
+
|
148 |
+
def get_params(self):
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column():
|
151 |
+
self.args_input['inv_model'] = gr.Radio(choices=list(BASE_MODEL.keys()), value=list(BASE_MODEL.keys())[1], label='inversion base model')
|
152 |
+
self.args_input['neg_prompt'] = gr.Textbox(label='negative prompt', value=self.args_base['neg_prompt'])
|
153 |
+
# with gr.Row():
|
154 |
+
self.args_input['alpha'] = gr.Number(label='positive prompt scaling weight (alpha)', value=self.args_base['alpha'], interactive=True)
|
155 |
+
self.args_input['beta'] = gr.Number(label='negative prompt scaling weight (beta)', value=self.args_base['beta'], interactive=True)
|
156 |
+
|
157 |
+
with gr.Column():
|
158 |
+
self.args_input['omega'] = gr.Slider(label='cfg', value=self.args_base['omega'], maximum=25, interactive=True)
|
159 |
+
|
160 |
+
self.args_input['inv_steps'] = gr.Slider(minimum=1, maximum=100, label='edit steps', interactive=True, value=self.args_base['inv_steps'], step=1)
|
161 |
+
self.args_input['spl_steps'] = gr.Slider(minimum=1, maximum=100, label='sample steps', interactive=False, value=self.args_base['spl_steps'], step=1, visible=False)
|
162 |
+
# sync inv_steps with spl_steps
|
163 |
+
self.args_input['inv_steps'].change(lambda x: x, inputs=self.args_input['inv_steps'], outputs=self.args_input['spl_steps'])
|
164 |
+
|
165 |
+
self.args_input['lora_scale'] = gr.Slider(minimum=0, maximum=1, label='LoRA scale', value=0.7)
|
166 |
+
self.args_input['seed'] = gr.Number(label='seed', value=self.args_base['seed'], interactive=True, precision=0, step=1)
|
167 |
+
|
168 |
+
def run_ditail(self, *values):
|
169 |
+
self.args = self.args_base.copy()
|
170 |
+
print(self.args_input.keys())
|
171 |
+
for k, v in zip(list(self.args_input.keys()), values):
|
172 |
+
self.args[k] = v
|
173 |
+
# quick fix for example
|
174 |
+
self.args['lora'] = 'none' if not isinstance(self.args['lora'], str) else self.args['lora']
|
175 |
+
print('selected lora: ', self.args['lora'])
|
176 |
+
# map inversion model to url
|
177 |
+
self.args['pos_prompt'] = ', '.join(LORA_TRIGGER_WORD.get(self.args['lora'], [])+[self.args['pos_prompt']])
|
178 |
+
self.args['inv_model'] = BASE_MODEL[self.args['inv_model']]
|
179 |
+
self.args['spl_model'] = BASE_MODEL[self.args['spl_model']]
|
180 |
+
print('selected model: ', self.args['inv_model'], self.args['spl_model'])
|
181 |
+
|
182 |
+
seed_everything(self.args['seed'])
|
183 |
+
ditail = DitailDemo(self.args)
|
184 |
+
|
185 |
+
metadata_to_show = ['inv_model', 'spl_model', 'lora', 'lora_scale', 'inv_steps', 'spl_steps', 'pos_prompt', 'alpha', 'neg_prompt', 'beta', 'omega']
|
186 |
+
self.args_to_show = {}
|
187 |
+
for key in metadata_to_show:
|
188 |
+
self.args_to_show[key] = self.args[key ]
|
189 |
+
|
190 |
+
return ditail.run_ditail(), self.args_to_show
|
191 |
+
# return self.args['img'], self.args
|
192 |
+
|
193 |
+
def run_example(self, img, prompt, inv_model, spl_model, lora):
|
194 |
+
return self.run_ditail(img, prompt, spl_model, gr.State(lora), inv_model)
|
195 |
+
|
196 |
+
def show_credits(self):
|
197 |
+
# gr.Markdown(
|
198 |
+
# """
|
199 |
+
# ### About Diffusion Cocktail (Ditail)
|
200 |
+
# * This is a research project by [MAPS Lab](https://whongyi.github.io/MAPS-research), [NYU Shanghai](https://shanghai.nyu.edu)
|
201 |
+
# * Authors: Haoming Liu ([email protected]), Yuanhe Guo ([email protected]), Hongyi Wen ([email protected])
|
202 |
+
# """
|
203 |
+
# )
|
204 |
+
gr.Markdown(
|
205 |
+
"""
|
206 |
+
### Model Credits
|
207 |
+
* Diffusion Models are downloaded from [huggingface](https://huggingface.co) and [civitai](https://civitai.com): [stable diffusion 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5), [realistic vision](https://huggingface.co/stablediffusionapi/realistic-vision-v51), [pastel mix](https://huggingface.co/stablediffusionapi/pastel-mix-stylized-anime), [chaos3.0](https://civitai.com/models/91534/chaos30)
|
208 |
+
* LoRA Models are downloaded from [civitai](https://civitai.com) and [liblib](https://www.liblib.art): [film](https://civitai.com/models/90393/japan-vibes-film-color), [snow](https://www.liblib.art/modelinfo/f732b23b02f041bdb7f8f3f8a256ca8b), [flat](https://www.liblib.art/modelinfo/76dcb8b59d814960b0244849f2747a15), [minecraft](https://civitai.com/models/113741/minecraft-square-style), [animeoutline](https://civitai.com/models/16014/anime-lineart-manga-like-style), [impressionism](https://civitai.com/models/113383/y5-impressionism-style), [pop](https://civitai.com/models/161450?modelVersionId=188417), [shinkai_makoto](https://civitai.com/models/10626?modelVersionId=12610)
|
209 |
+
"""
|
210 |
+
)
|
211 |
+
|
212 |
+
|
213 |
+
def ui(self):
|
214 |
+
with gr.Blocks(css='.input_image img {object-fit: contain;}', head=self.ga_script) as demo:
|
215 |
+
self.title()
|
216 |
+
with gr.Row():
|
217 |
+
# with gr.Column():
|
218 |
+
self.get_image()
|
219 |
+
|
220 |
+
with gr.Column():
|
221 |
+
self.get_prompts()
|
222 |
+
self.get_base_model()
|
223 |
+
self.get_lora(num_cols=3)
|
224 |
+
submit_btn = gr.Button("Generate", variant='primary')
|
225 |
+
|
226 |
+
with gr.Accordion("advanced options", open=False):
|
227 |
+
self.get_params()
|
228 |
+
|
229 |
+
with gr.Row():
|
230 |
+
output_image = gr.Image(label="output image")
|
231 |
+
# expected_output_image = gr.Image(label="expected output image", visible=False)
|
232 |
+
metadata = gr.JSON(label='metadata')
|
233 |
+
|
234 |
+
submit_btn.click(self.run_ditail,
|
235 |
+
inputs=list(self.args_input.values()),
|
236 |
+
outputs=[output_image, metadata],
|
237 |
+
scroll_to_output=True,
|
238 |
+
)
|
239 |
+
|
240 |
+
with gr.Row():
|
241 |
+
cache_examples = not self.debug_mode
|
242 |
+
gr.Examples(
|
243 |
+
examples=[[os.path.join(os.path.dirname(__file__), "example", "Lenna.png"), 'a woman called Lenna wearing a feathered hat', list(BASE_MODEL.keys())[1], list(BASE_MODEL.keys())[2], 'none']],
|
244 |
+
inputs=[self.args_input['img'], self.args_input['pos_prompt'], self.args_input['inv_model'], self.args_input['spl_model'], gr.Textbox(label='LoRA', visible=False), ],
|
245 |
+
fn = self.run_example,
|
246 |
+
outputs=[output_image, metadata],
|
247 |
+
run_on_click=True,
|
248 |
+
cache_examples=cache_examples,
|
249 |
+
)
|
250 |
+
|
251 |
+
self.show_credits()
|
252 |
+
|
253 |
+
demo.load(None, js=self.ga_load)
|
254 |
+
return demo
|
255 |
+
|
256 |
+
|
257 |
+
app = WebApp(debug_mode=False)
|
258 |
+
demo = app.ui()
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
demo.launch(share=True)
|
263 |
+
# demo.launch()
|
264 |
+
|
265 |
+
|