for debugging
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import torchvision.transforms as T
|
|
7 |
|
8 |
from clip_interrogator import Config, Interrogator
|
9 |
from diffusers import StableDiffusionPipeline
|
|
|
10 |
|
11 |
from ditail import DitailDemo, seed_everything
|
12 |
|
@@ -82,20 +83,21 @@ class WebApp():
|
|
82 |
self.debug_mode = debug_mode # turn off clip interrogator when debugging for faster building speed
|
83 |
if not self.debug_mode:
|
84 |
self.init_interrogator()
|
|
|
85 |
|
86 |
|
87 |
def init_interrogator(self):
|
88 |
cache_path = os.environ.get('HF_HOME')
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
config = Config()
|
93 |
config.clip_model_name = self.args_base['clip_model_name']
|
94 |
config.caption_model_name = self.args_base['caption_model_name']
|
95 |
self.ci = Interrogator(config)
|
96 |
self.ci.config.chunk_size = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
|
97 |
self.ci.config.flavor_intermediate_count = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
|
98 |
|
|
|
99 |
|
100 |
def _preload_pipeline(self):
|
101 |
for model in BASE_MODEL.values():
|
@@ -206,8 +208,9 @@ class WebApp():
|
|
206 |
|
207 |
return ditail.run_ditail(), self.args_to_show
|
208 |
# return self.args['img'], self.args
|
209 |
-
except:
|
210 |
-
print("
|
|
|
211 |
|
212 |
def run_example(self, img, prompt, inv_model, spl_model, lora):
|
213 |
return self.run_ditail(img, prompt, spl_model, gr.State(lora), inv_model)
|
|
|
7 |
|
8 |
from clip_interrogator import Config, Interrogator
|
9 |
from diffusers import StableDiffusionPipeline
|
10 |
+
from transformers import file_utils
|
11 |
|
12 |
from ditail import DitailDemo, seed_everything
|
13 |
|
|
|
83 |
self.debug_mode = debug_mode # turn off clip interrogator when debugging for faster building speed
|
84 |
if not self.debug_mode:
|
85 |
self.init_interrogator()
|
86 |
+
|
87 |
|
88 |
|
89 |
def init_interrogator(self):
|
90 |
cache_path = os.environ.get('HF_HOME')
|
91 |
+
print(f"Intended cache dir: {cache_path}")
|
92 |
+
config = Config()
|
93 |
+
config.cache_path = cache_path
|
|
|
94 |
config.clip_model_name = self.args_base['clip_model_name']
|
95 |
config.caption_model_name = self.args_base['caption_model_name']
|
96 |
self.ci = Interrogator(config)
|
97 |
self.ci.config.chunk_size = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
|
98 |
self.ci.config.flavor_intermediate_count = 2048 if self.ci.config.clip_model_name == "ViT-L-14/openai" else 1024
|
99 |
|
100 |
+
print(f"HF cache dir: {file_utils.default_cache_path}")
|
101 |
|
102 |
def _preload_pipeline(self):
|
103 |
for model in BASE_MODEL.values():
|
|
|
208 |
|
209 |
return ditail.run_ditail(), self.args_to_show
|
210 |
# return self.args['img'], self.args
|
211 |
+
except Exception as e:
|
212 |
+
print(f"Error catched: {e}")
|
213 |
+
gr.Markdown(f"**Error catched: {e}**")
|
214 |
|
215 |
def run_example(self, img, prompt, inv_model, spl_model, lora):
|
216 |
return self.run_ditail(img, prompt, spl_model, gr.State(lora), inv_model)
|