Spaces:
Runtime error
Runtime error
File size: 3,555 Bytes
83a648d 5bbc734 83a648d 1fcea40 5bbc734 fb540e3 5bbc734 fb540e3 5bbc734 e79c988 5bbc734 83a648d 5bbc734 e79c988 5bbc734 e79c988 5bbc734 83a648d 5bbc734 e79c988 5bbc734 fb540e3 5bbc734 8e3efa7 e79c988 5bbc734 e79c988 5bbc734 e79c988 5bbc734 83a648d 5bbc734 83a648d e79c988 83a648d 5bbc734 e79c988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import streamlit as st
import torch
import numpy as np
import pandas as pd
from transformers import AutoTokenizer, AutoModel
import re
st.title("Книжные рекомендации")
# Загрузка модели и токенизатора
model_name = "cointegrated/rubert-tiny2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, output_hidden_states=True)
# Загрузка датасета и аннотаций к книгам
books = pd.read_csv('book_6000.csv')
books.dropna(inplace=True)
books = books[books['annotation'].apply(lambda x: len(x.split()) >= 10)]
books.drop_duplicates(subset='title', keep='first', inplace=True)
books = books.reset_index(drop=True)
def data_preprocessing(text: str) -> str:
text = re.sub(r'http\S+', " ", text) # удаляем ссылки
text = re.sub(r'@\w+', ' ', text) # удаляем упоминания пользователей
text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги
text = re.sub(r'<.*?>', ' ', text) # html tags
return text
for i in ['author', 'title', 'annotation']:
books[i] = books[i].apply(data_preprocessing)
annot = books['annotation']
# Получение эмбеддингов аннотаций каждой книги в датасете
max_len = 128
token_annot = annot.apply(lambda x: tokenizer.encode(x, add_special_tokens=True,
truncation=True, max_length=max_len))
padded = np.array([i + [0] * (max_len - len(i)) for i in token_annot.values]) # заполним недостающую длину нулями
attention_mask = np.where(padded != 0, 1, 0) # создадим маску, отметим где есть значения а где пустота
# Переведем numpy массивы в тензоры PyTorch
input_ids = torch.tensor(padded, dtype=torch.long)
attention_mask = torch.tensor(attention_mask, dtype=torch.long)
book_embeddings = []
for inputs, attention_masks in zip(input_ids, attention_mask):
with torch.no_grad():
book_embedding = model(inputs.unsqueeze(0), attention_mask=attention_masks.unsqueeze(0))
book_embedding = book_embedding[0][:, 0, :]#.detach().cpu().numpy()
book_embeddings.append(np.squeeze(book_embedding))
# Определение запроса пользователя
query = st.text_input("Введите запрос")
query_tokens = tokenizer.encode(query, add_special_tokens=True,
truncation=True, max_length=max_len)
query_padded = np.array(query_tokens + [0] * (max_len - len(query_tokens)))
query_mask = np.where(query_padded != 0, 1, 0)
# Переведем numpy массивы в тензоры PyTorch
query_padded = torch.tensor(query_padded, dtype=torch.long)
query_mask = torch.tensor(query_mask, dtype=torch.long)
with torch.no_grad():
query_embedding = model(query_padded.unsqueeze(0), query_mask.unsqueeze(0))
query_embedding = query_embedding[0][:, 0, :].detach().cpu().numpy()
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией
cosine_similarities = torch.nn.functional.cosine_similarity(
query_embedding.squeeze(0),
torch.stack(book_embeddings)
)
cosine_similarities = cosine_similarities.numpy()
indices = np.argsort(cosine_similarities)[::-1] # Сортировка по убыванию
for i in indices[:10]:
st.write(books['title'][i])
|