Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
import numpy as np | |
import pandas as pd | |
from transformers import AutoTokenizer, AutoModel | |
import re | |
st.title("Книжные рекомендации") | |
# Загрузка модели и токенизатора | |
model_name = "cointegrated/rubert-tiny2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained(model_name, output_hidden_states=True) | |
# Загрузка датасета и аннотаций к книгам | |
books = pd.read_csv('book_6000.csv') | |
books.dropna(inplace=True) | |
books = books[books['annotation'].apply(lambda x: len(x.split()) >= 10)] | |
books.drop_duplicates(subset='title', keep='first', inplace=True) | |
books = books.reset_index(drop=True) | |
def data_preprocessing(text: str) -> str: | |
text = re.sub(r'http\S+', " ", text) # удаляем ссылки | |
text = re.sub(r'@\w+', ' ', text) # удаляем упоминания пользователей | |
text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги | |
text = re.sub(r'<.*?>', ' ', text) # html tags | |
return text | |
for i in ['author', 'title', 'annotation']: | |
books[i] = books[i].apply(data_preprocessing) | |
annot = books['annotation'] | |
# Получение эмбеддингов аннотаций каждой книги в датасете | |
max_len = 128 | |
token_annot = annot.apply(lambda x: tokenizer.encode(x, add_special_tokens=True, | |
truncation=True, max_length=max_len)) | |
padded = np.array([i + [0] * (max_len - len(i)) for i in token_annot.values]) # заполним недостающую длину нулями | |
attention_mask = np.where(padded != 0, 1, 0) # создадим маску, отметим где есть значения а где пустота | |
# Переведем numpy массивы в тензоры PyTorch | |
input_ids = torch.tensor(padded, dtype=torch.long) | |
attention_mask = torch.tensor(attention_mask, dtype=torch.long) | |
book_embeddings = [] | |
for inputs, attention_masks in zip(input_ids, attention_mask): | |
with torch.no_grad(): | |
book_embedding = model(inputs.unsqueeze(0), attention_mask=attention_masks.unsqueeze(0)) | |
book_embedding = book_embedding[0][:, 0, :]#.detach().cpu().numpy() | |
book_embeddings.append(np.squeeze(book_embedding)) | |
# Определение запроса пользователя | |
query = st.text_input("Введите запрос") | |
query_tokens = tokenizer.encode(query, add_special_tokens=True, | |
truncation=True, max_length=max_len) | |
query_padded = np.array(query_tokens + [0] * (max_len - len(query_tokens))) | |
query_mask = np.where(query_padded != 0, 1, 0) | |
# Переведем numpy массивы в тензоры PyTorch | |
query_padded = torch.tensor(query_padded, dtype=torch.long) | |
query_mask = torch.tensor(query_mask, dtype=torch.long) | |
with torch.no_grad(): | |
query_embedding = model(query_padded.unsqueeze(0), query_mask.unsqueeze(0)) | |
query_embedding = query_embedding[0][:, 0, :].detach().cpu().numpy() | |
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией | |
cosine_similarities = torch.nn.functional.cosine_similarity( | |
query_embedding.squeeze(0), | |
torch.stack(book_embeddings) | |
) | |
cosine_similarities = cosine_similarities.numpy() | |
indices = np.argsort(cosine_similarities)[::-1] # Сортировка по убыванию | |
for i in indices[:10]: | |
st.write(books['title'][i]) | |