Spaces:
Runtime error
Runtime error
Upload stri.py
Browse files- pages/stri.py +74 -0
pages/stri.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoTokenizer, AutoModel
|
7 |
+
import re
|
8 |
+
import pickle
|
9 |
+
import requests
|
10 |
+
from io import BytesIO
|
11 |
+
|
12 |
+
st.title("Книжные рекомендации")
|
13 |
+
|
14 |
+
# Загрузка модели и токенизатора
|
15 |
+
model_name = "cointegrated/rubert-tiny2"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModel.from_pretrained(model_name, output_hidden_states=True)
|
18 |
+
|
19 |
+
# Загрузка датасета и аннотаций к книгам
|
20 |
+
books = pd.read_csv('all+++.csv')
|
21 |
+
books['author'].fillna('other', inplace=True)
|
22 |
+
|
23 |
+
annot = books['annotation']
|
24 |
+
|
25 |
+
# Получение эмбеддингов аннотаций каждой книги в датасете
|
26 |
+
length = 256
|
27 |
+
|
28 |
+
# Определение запроса пользователя
|
29 |
+
query = st.text_input("Введите запрос")
|
30 |
+
|
31 |
+
num_books_per_page = st.selectbox("Количество книг на странице:", [3, 5, 10], index=0)
|
32 |
+
|
33 |
+
col1, col2 = st.columns(2)
|
34 |
+
generate_button = col1.button('Сгенерировать')
|
35 |
+
|
36 |
+
if generate_button:
|
37 |
+
with open("book_embeddings256xxx.pkl", "rb") as f:
|
38 |
+
book_embeddings = pickle.load(f)
|
39 |
+
|
40 |
+
query_tokens = tokenizer.encode_plus(
|
41 |
+
query,
|
42 |
+
add_special_tokens=True,
|
43 |
+
max_length=length, # Ограничение на максимальную длину входной последовательности
|
44 |
+
pad_to_max_length=True, # Дополним последовательность нулями до максимальной длины
|
45 |
+
return_tensors='pt' # Вернём тензоры PyTorch
|
46 |
+
)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
query_outputs = model(**query_tokens)
|
50 |
+
query_hidden_states = query_outputs.hidden_states[-1][:, 0, :]
|
51 |
+
query_hidden_states = torch.nn.functional.normalize(query_hidden_states)
|
52 |
+
|
53 |
+
# Вычисление косинусного расстояния между эмбеддингом запроса и каждой аннотацией
|
54 |
+
cosine_similarities = torch.nn.functional.cosine_similarity(
|
55 |
+
query_hidden_states.squeeze(0),
|
56 |
+
torch.stack(book_embeddings)
|
57 |
+
)
|
58 |
+
|
59 |
+
cosine_similarities = cosine_similarities.numpy()
|
60 |
+
|
61 |
+
indices = np.argsort(cosine_similarities)[::-1] # Сортировка по убыванию
|
62 |
+
|
63 |
+
for i in indices[:num_books_per_page]:
|
64 |
+
cols = st.columns(2) # Создание двух столбцов для размещения информации и изображения
|
65 |
+
cols[1].write("## " + books['title'][i])
|
66 |
+
cols[1].markdown("**Автор:** " + books['author'][i])
|
67 |
+
cols[1].markdown("**Аннотация:** " + books['annotation'][i])
|
68 |
+
image_url = books['image_url'][i]
|
69 |
+
|
70 |
+
response = requests.get(image_url)
|
71 |
+
image = Image.open(BytesIO(response.content))
|
72 |
+
cols[0].image(image)
|
73 |
+
cols[0].write(cosine_similarities[i])
|
74 |
+
cols[1].write("---")
|