import gradio as gr import py3Dmol from Bio.PDB import * import numpy as np from Bio.PDB import PDBParser import pandas as pd import torch import os from MDmodel import GNN_MD import h5py from transformMD import GNNTransformMD import sys import pytraj as pt import pickle # JavaScript functions resid_hover = """function(atom,viewer) {{ if(!atom.label) {{ atom.label = viewer.addLabel('{0}:'+atom.atom+atom.serial, {{position: atom, backgroundColor: 'mintcream', fontColor:'black'}}); }} }}""" hover_func = """ function(atom,viewer) { if(!atom.label) { atom.label = viewer.addLabel(atom.interaction, {position: atom, backgroundColor: 'black', fontColor:'white'}); } }""" unhover_func = """ function(atom,viewer) { if(atom.label) { viewer.removeLabel(atom.label); delete atom.label; } }""" atom_mapping = {0:'H', 1:'C', 2:'N', 3:'O', 4:'F', 5:'P', 6:'S', 7:'CL', 8:'BR', 9:'I', 10: 'UNK'} model = GNN_MD(11, 64) state_dict = torch.load( "best_weights_rep0.pt", map_location=torch.device("cpu"), )["model_state_dict"] model.load_state_dict(state_dict) model = model.to('cpu') model.eval() def run_leap(fileName, path): leapText = """ source leaprc.protein.ff14SB source leaprc.water.tip3p exp = loadpdb PATH4amb.pdb saveamberparm exp PATHexp.top PATHexp.crd quit """ with open(path+"leap.in", "w") as outLeap: outLeap.write(leapText.replace('PATH', path)) os.system("tleap -f "+path+"leap.in >> "+path+"leap.out") def convert_to_amber_format(pdbName): fileName, path = pdbName+'.pdb', '' os.system("pdb4amber -i "+fileName+" -p -y -o "+path+"4amb.pdb -l "+path+"pdb4amber_protein.log") run_leap(fileName, path) traj = pt.iterload(path+'exp.crd', top = path+'exp.top') pt.write_traj(path+fileName, traj, overwrite= True) print(path+fileName+' was created. Please always use this file for inspection because the coordinates might get translated during amber file generation and thus might vary from the input pdb file.') return pt.iterload(path+'exp.crd', top = path+'exp.top') def get_maps(mapPath): residueMap = pickle.load(open(os.path.join(mapPath,'atoms_residue_map_generate.pickle'),'rb')) nameMap = pickle.load(open(os.path.join(mapPath,'atoms_name_map_generate.pickle'),'rb')) typeMap = pickle.load(open(os.path.join(mapPath,'atoms_type_map_generate.pickle'),'rb')) elementMap = pickle.load(open(os.path.join(mapPath,'map_atomType_element_numbers.pickle'),'rb')) return residueMap, nameMap, typeMap, elementMap def get_residues_atomwise(residues): atomwise = [] for name, nAtoms in residues: for i in range(nAtoms): atomwise.append(name) return atomwise def get_begin_atom_index(traj): natoms = [m.n_atoms for m in traj.top.mols] molecule_begin_atom_index = [0] x = 0 for i in range(len(natoms)): x += natoms[i] molecule_begin_atom_index.append(x) print('molecule begin atom index', molecule_begin_atom_index, natoms) return molecule_begin_atom_index def get_traj_info(traj, mapPath): coordinates = traj.xyz residueMap, nameMap, typeMap, elementMap = get_maps(mapPath) types = [typeMap[a.type] for a in traj.top.atoms] elements = [elementMap[typ] for typ in types] atomic_numbers = [a.atomic_number for a in traj.top.atoms] molecule_begin_atom_index = get_begin_atom_index(traj) residues = [(residueMap[res.name], res.n_atoms) for res in traj.top.residues] residues_atomwise = get_residues_atomwise(residues) return coordinates[0], elements, types, atomic_numbers, residues_atomwise, molecule_begin_atom_index def write_h5_info(outName, struct, atoms_type, atoms_number, atoms_residue, atoms_element, molecules_begin_atom_index, atoms_coordinates_ref): if os.path.isfile(outName): os.remove(outName) with h5py.File(outName, 'w') as oF: subgroup = oF.create_group(struct) subgroup.create_dataset('atoms_residue', data= atoms_residue, compression = "gzip", dtype='i8') subgroup.create_dataset('molecules_begin_atom_index', data= molecules_begin_atom_index, compression = "gzip", dtype='i8') subgroup.create_dataset('atoms_type', data= atoms_type, compression = "gzip", dtype='i8') subgroup.create_dataset('atoms_number', data= atoms_number, compression = "gzip", dtype='i8') subgroup.create_dataset('atoms_element', data= atoms_element, compression = "gzip", dtype='i8') subgroup.create_dataset('atoms_coordinates_ref', data= atoms_coordinates_ref, compression = "gzip", dtype='f8') def preprocess(pdbid: str = None, ouputfile: str = "inference_for_md.hdf5", mask: str = "!@H=", mappath: str = "/maps/"): traj = convert_to_amber_format(pdbid) atoms_coordinates_ref, atoms_element, atoms_type, atoms_number, atoms_residue, molecules_begin_atom_index = get_traj_info(traj[mask], mappath) write_h5_info(ouputfile, pdbid, atoms_type, atoms_number, atoms_residue, atoms_element, molecules_begin_atom_index, atoms_coordinates_ref) def get_pdb(pdb_code="", filepath=""): try: return filepath.name except AttributeError as e: if pdb_code is None or pdb_code == "": return None else: os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb") return f"{pdb_code}.pdb" def get_offset(pdb): pdb_multiline = pdb.split("\n") for line in pdb_multiline: if line.startswith("ATOM"): return int(line[22:27]) def get_pdbid_from_filename(filename: str): # Assuming the filename would be of the standard form 11GS.pdb return filename.split(".")[0] def predict(pdb_code, pdb_file): #path_to_pdb = get_pdb(pdb_code=pdb_code, filepath=pdb_file) #pdb = open(path_to_pdb, "r").read() # switch to misato env if not running from container pdbid = get_pdbid_from_filename(pdb_file.name) mdh5_file = "inference_for_md.hdf5" mappath = "/maps" mask = "!@H=" preprocess(pdbid=pdbid, ouputfile=mdh5_file, mask=mask, mappath=mappath) md_H5File = h5py.File(mdh5_file) column_names = ["x", "y", "z", "element"] atoms_protein = pd.DataFrame(columns = column_names) cutoff = md_H5File[pdbid]["molecules_begin_atom_index"][:][-1] # cutoff defines protein atoms atoms_protein["x"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 0] atoms_protein["y"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 1] atoms_protein["z"] = md_H5File[pdbid]["atoms_coordinates_ref"][:][:cutoff, 2] atoms_protein["element"] = md_H5File[pdbid]["atoms_element"][:][:cutoff] item = {} item["scores"] = 0 item["id"] = pdbid item["atoms_protein"] = atoms_protein transform = GNNTransformMD() data_item = transform(item) adaptability = model(data_item) adaptability = adaptability.detach().numpy() data = [] for i in range(adaptability.shape[0]): data.append([i, atom_mapping[atoms_protein.iloc[i, atoms_protein.columns.get_loc("element")] - 1], atoms_protein.iloc[i, atoms_protein.columns.get_loc("x")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("y")],atoms_protein.iloc[i, atoms_protein.columns.get_loc("z")],adaptability[i]]) topN = 100 topN_ind = np.argsort(adaptability)[::-1][:topN] pdb = open(pdb_file.name, "r").read() view = py3Dmol.view(width=600, height=400) view.setBackgroundColor('white') view.addModel(pdb, "pdb") view.setStyle({'stick': {'colorscheme': {'prop': 'resi', 'C': 'turquoise'}}}) view.addLight([0, 0, 10], [1, 1, 1], 1) # Add directional light from the z-axis view.setSpecular(0.5) # Adjust the specular lighting effect view.setAmbient(0.5) # Adjust the ambient lighting effect for i in range(10): adaptability_value = adaptability[topN_ind[i]] color = 'orange' view.addSphere({ 'center': { 'x': atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("x")], 'y': atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("y")], 'z': atoms_protein.iloc[topN_ind[i], atoms_protein.columns.get_loc("z")] }, 'radius': adaptability_value / 1.5, 'color': color, 'alpha': 0.75 }) view.zoomTo() output = view._make_html().replace("'", '"') x = f""" {output} """ # do not use ' in this input return f"""""", pd.DataFrame(data, columns=['index','element','x','y','z','Adaptability']) callback = gr.CSVLogger() def run(): with gr.Blocks() as demo: gr.Markdown("# Protein Adaptability Prediction") #text_input = gr.Textbox() #text_output = gr.Textbox() #text_button = gr.Button("Flip") inp = gr.Textbox(placeholder="PDB Code or upload file below", label="Input structure") pdb_file = gr.File(label="PDB File Upload") #with gr.Row(): # helix = gr.ColorPicker(label="helix") # sheet = gr.ColorPicker(label="sheet") # loop = gr.ColorPicker(label="loop") single_btn = gr.Button(label="Run") with gr.Row(): html = gr.HTML() with gr.Row(): dataframe = gr.Dataframe() single_btn.click(fn=predict, inputs=[inp, pdb_file], outputs=[html, dataframe]) demo.launch(server_name="0.0.0.0", server_port=7860) if __name__ == "__main__": run()