File size: 6,749 Bytes
cb5b71d
 
 
 
 
 
fe3ba5f
cb5b71d
 
 
 
e92e659
cb5b71d
 
 
f82850d
 
cb5b71d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92e659
 
cb5b71d
 
 
 
 
 
 
 
 
 
 
 
 
e92e659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5b71d
 
 
e92e659
cb5b71d
 
 
e92e659
 
cb5b71d
 
 
e92e659
 
 
cb5b71d
 
 
fe3ba5f
 
 
 
cb5b71d
e92e659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5b71d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3ba5f
cb5b71d
fe3ba5f
cb5b71d
fe3ba5f
cb5b71d
fe3ba5f
cb5b71d
fe3ba5f
cb5b71d
7b9203f
 
 
 
fe3ba5f
cb5b71d
 
fe3ba5f
 
 
 
 
 
cb5b71d
 
 
 
 
 
fe3ba5f
 
cb5b71d
 
 
 
 
 
 
e92e659
cb5b71d
 
 
 
fe3ba5f
cb5b71d
 
e92e659
 
 
fe3ba5f
 
e92e659
fe3ba5f
 
cb5b71d
 
 
e92e659
cb5b71d
 
 
e92e659
cb5b71d
 
 
e92e659
 
 
cb5b71d
 
e92e659
cb5b71d
bc133ae
cb5b71d
 
fe3ba5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import dataclasses
import hashlib
import io
import tempfile

from etils import epath
import magic
import pandas as pd
import requests

from .names import find_unique_name
from .path import get_resource_path
from .state import FileObject
from .state import FileSet

FILE_OBJECT = "FileObject"
FILE_SET = "FileSet"
RESOURCE_TYPES = [FILE_OBJECT, FILE_SET]


@dataclasses.dataclass
class FileType:
    name: str
    encoding_format: str
    extensions: list[str]


class FileTypes:
    CSV = FileType(name="CSV", encoding_format="text/csv", extensions=["csv"])
    EXCEL = FileType(
        name="Excel",
        encoding_format="application/vnd.ms-excel",
        extensions=["xls", "xlsx", "xlsm"],
    )
    GZIP = FileType(name="GZIP", encoding_format="application/gzip", extensions=["gz"])
    JPEG = FileType(name="JPEG", encoding_format="image/jpeg", extensions=["json"])
    JSON = FileType(
        name="JSON", encoding_format="application/json", extensions=["json"]
    )
    JSONL = FileType(
        name="JSON-Lines",
        encoding_format="application/jsonl+json",
        extensions=["jsonl"],
    )
    PARQUET = FileType(
        name="Parquet",
        encoding_format="application/vnd.apache.parquet",
        extensions=["parquet"],
    )
    TAR = FileType(
        name="Archive (TAR)",
        encoding_format="application/x-tar",
        extensions=["tar"],
    )
    TXT = FileType(
        name="Text",
        encoding_format="plain/text",
        extensions=["txt"],
    )
    ZIP = FileType(
        name="ZIP",
        encoding_format="application/zip",
        extensions=["zip"],
    )


def _full_name(file_type: FileType):
    return f"{file_type.name} ({file_type.encoding_format})"


FILE_TYPES: dict[str, FileType] = {
    _full_name(file_type): file_type
    for file_type in [
        FileTypes.CSV,
        FileTypes.EXCEL,
        FileTypes.GZIP,
        FileTypes.JPEG,
        FileTypes.JSON,
        FileTypes.JSONL,
        FileTypes.PARQUET,
        FileTypes.TAR,
        FileTypes.TXT,
        FileTypes.ZIP,
    ]
}

ENCODING_FORMATS: dict[str, FileType] = {
    file_type.encoding_format: file_type for file_type in FILE_TYPES.values()
}


def name_to_code(file_type_name: str) -> str | None:
    """Maps names to the encoding format: Text => plain/text."""
    for name, file_type in FILE_TYPES.items():
        if file_type_name == name:
            return file_type.encoding_format
    return None


def code_to_index(encoding_format: str) -> int | None:
    """Maps the encoding format to its index in the list of keys: plain/text => 12."""
    for i, file_type in enumerate(FILE_TYPES.values()):
        if file_type.encoding_format == encoding_format:
            return i
    return None


def _sha256(content: bytes):
    """Computes the sha256 digest of the byte string."""
    return hashlib.sha256(content).hexdigest()


def hash_file_path(url: str) -> epath.Path:
    """Reproducibly produces the file path."""
    tempdir = epath.Path(tempfile.gettempdir())
    hash = _sha256(url.encode())
    return tempdir / f"croissant-editor-{hash}"


def download_file(url: str, file_path: epath.Path):
    """Downloads the file locally to `file_path`."""
    with requests.get(url, stream=True) as request:
        request.raise_for_status()
        with tempfile.TemporaryDirectory() as tmpdir:
            tmpdir = epath.Path(tmpdir) / "file"
            with tmpdir.open("wb") as file:
                for chunk in request.iter_content(chunk_size=8192):
                    file.write(chunk)
            tmpdir.copy(file_path)


def get_dataframe(file_type: FileType, file: io.BytesIO | epath.Path) -> pd.DataFrame:
    """Gets the df associated to the file."""
    if file_type == FileTypes.CSV:
        df = pd.read_csv(file)
    elif file_type == FileTypes.EXCEL:
        df = pd.read_excel(file)
    elif file_type == FileTypes.JSON:
        df = pd.read_json(file)
    elif file_type == FileTypes.JSONL:
        df = pd.read_json(file, lines=True)
    elif file_type == FileTypes.PARQUET:
        df = pd.read_parquet(file)
    else:
        raise NotImplementedError(
            f"File type {file_type} is not supported. Please, open an issue on GitHub:"
            " https://github.com/mlcommons/croissant/issues/new"
        )
    return df.infer_objects()


def guess_file_type(path: epath.Path) -> FileType | None:
    mime = magic.from_file(path, mime=True)
    return ENCODING_FORMATS.get(mime)


def file_from_url(url: str, names: set[str], folder: epath.Path) -> FileObject:
    """Downloads locally and extracts the file information."""
    file_path = hash_file_path(url)
    if not file_path.exists():
        download_file(url, file_path)
    with file_path.open("rb") as file:
        sha256 = _sha256(file.read())
    file_type = guess_file_type(file_path)
    df = get_dataframe(file_type, file_path)
    return FileObject(
        name=find_unique_name(names, url.split("/")[-1]),
        description="",
        content_url=url,
        encoding_format=file_type.encoding_format,
        sha256=sha256,
        df=df,
        folder=folder,
    )


def file_from_upload(
    file: io.BytesIO, names: set[str], folder: epath.Path
) -> FileObject:
    """Uploads locally and extracts the file information."""
    value = file.getvalue()
    content_url = f"data/{file.name}"
    sha256 = _sha256(value)
    file_path = get_resource_path(content_url)
    with file_path.open("wb") as f:
        f.write(value)
    file_type = guess_file_type(file_path)
    df = get_dataframe(file_type, file)
    return FileObject(
        name=find_unique_name(names, file.name),
        description="",
        content_url=content_url,
        encoding_format=file_type.encoding_format,
        sha256=sha256,
        df=df,
        folder=folder,
    )


def file_from_form(
    type: str, names: set[str], folder: epath.Path
) -> FileObject | FileSet:
    """Creates a file based on manually added fields."""
    if type == FILE_OBJECT:
        return FileObject(name=find_unique_name(names, "file_object"), folder=folder)
    elif type == FILE_SET:
        return FileSet(name=find_unique_name(names, "file_set"))
    else:
        raise ValueError("type has to be one of FILE_OBJECT, FILE_SET")


def is_url(file: FileObject) -> bool:
    return file.content_url and file.content_url.startswith("http")


def trigger_download(file: FileObject):
    if is_url(file):
        file_path = hash_file_path(file.content_url)
        if not file_path.exists():
            download_file(file.content_url, file_path)
    else:
        file_path = get_resource_path(file.content_url)
    file_type = guess_file_type(file_path)
    df = get_dataframe(file_type, file_path)
    file.df = df