Spaces:
Running
Running
File size: 11,875 Bytes
bca3a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import torch
import torch.nn as nn
from typing import Tuple, Optional
from dockformer.model.primitives import Linear, LayerNorm
from dockformer.utils.tensor_utils import add
class StructureInputEmbedder(nn.Module):
"""
Embeds a subset of the input features.
Implements a merge of Algorithms 3 and Algorithm 32.
"""
def __init__(
self,
protein_tf_dim: int,
ligand_tf_dim: int,
additional_tf_dim: int,
ligand_bond_dim: int,
c_z: int,
c_m: int,
relpos_k: int,
prot_min_bin: float,
prot_max_bin: float,
prot_no_bins: int,
lig_min_bin: float,
lig_max_bin: float,
lig_no_bins: int,
inf: float = 1e8,
**kwargs,
):
"""
Args:
tf_dim:
Final dimension of the target features
c_z:
Pair embedding dimension
c_m:
Single embedding dimension
relpos_k:
Window size used in relative positional encoding
"""
super(StructureInputEmbedder, self).__init__()
self.tf_dim = protein_tf_dim + ligand_tf_dim + additional_tf_dim
self.pair_tf_dim = ligand_bond_dim
self.c_z = c_z
self.c_m = c_m
self.linear_tf_z_i = Linear(self.tf_dim, c_z)
self.linear_tf_z_j = Linear(self.tf_dim, c_z)
self.linear_tf_m = Linear(self.tf_dim, c_m)
self.ligand_linear_bond_z = Linear(ligand_bond_dim, c_z)
# RPE stuff
self.relpos_k = relpos_k
self.no_bins = 2 * relpos_k + 1
self.linear_relpos = Linear(self.no_bins, c_z)
# Recycling stuff
self.prot_min_bin = prot_min_bin
self.prot_max_bin = prot_max_bin
self.prot_no_bins = prot_no_bins
self.lig_min_bin = lig_min_bin
self.lig_max_bin = lig_max_bin
self.lig_no_bins = lig_no_bins
self.inf = inf
self.prot_recycling_linear = Linear(self.prot_no_bins + 1, self.c_z)
self.lig_recycling_linear = Linear(self.lig_no_bins, self.c_z)
self.layer_norm_m = LayerNorm(self.c_m)
self.layer_norm_z = LayerNorm(self.c_z)
def relpos(self, ri: torch.Tensor):
"""
Computes relative positional encodings
Implements Algorithm 4.
Args:
ri:
"residue_index" features of shape [*, N]
"""
d = ri[..., None] - ri[..., None, :]
boundaries = torch.arange(
start=-self.relpos_k, end=self.relpos_k + 1, device=d.device
)
reshaped_bins = boundaries.view(((1,) * len(d.shape)) + (len(boundaries),))
d = d[..., None] - reshaped_bins
d = torch.abs(d)
d = torch.argmin(d, dim=-1)
d = nn.functional.one_hot(d, num_classes=len(boundaries)).float()
d = d.to(ri.dtype)
return self.linear_relpos(d)
def _get_binned_distogram(self, x, min_bin, max_bin, no_bins, recycling_linear, prot_distogram_mask=None):
# This squared method might become problematic in FP16 mode.
bins = torch.linspace(
min_bin,
max_bin,
no_bins,
dtype=x.dtype,
device=x.device,
requires_grad=False,
)
squared_bins = bins ** 2
upper = torch.cat(
[squared_bins[1:], squared_bins.new_tensor([self.inf])], dim=-1
)
d = torch.sum((x[..., None, :] - x[..., None, :, :]) ** 2, dim=-1, keepdims=True)
# [*, N, N, no_bins]
d = ((d > squared_bins) * (d < upper)).type(x.dtype)
# print("d shape", d.shape, d[0][0][:10])
if prot_distogram_mask is not None:
expanded_d = torch.cat([d, torch.zeros(*d.shape[:-1], 1, device=d.device)], dim=-1)
# Step 2: Create a mask where `input_positions_masked` is 0
# Use broadcasting and tensor operations directly without additional variables
input_positions_mask = (prot_distogram_mask == 1).float() # Shape [N, crop_size]
mask_i = input_positions_mask.unsqueeze(2) # Shape [N, crop_size, 1]
mask_j = input_positions_mask.unsqueeze(1) # Shape [N, 1, crop_size]
# Step 3: Combine masks for both [N, :, i, :] and [N, i, :, :]
combined_mask = mask_i + mask_j # Shape [N, crop_size, crop_size]
combined_mask = combined_mask.clamp(max=1) # Ensure binary mask
# Step 4: Apply the mask
# a. Set all but the last position in the `no_bins + 1` dimension to 0 where the mask is 1
expanded_d[..., :-1] *= (1 - combined_mask).unsqueeze(-1) # Shape [N, crop_size, crop_size, no_bins]
# print("expanded_d shape1", expanded_d.shape, expanded_d[0][0][:10])
# b. Set the last position in the `no_bins + 1` dimension to 1 where the mask is 1
expanded_d[..., -1] += combined_mask # Shape [N, crop_size, crop_size, 1]
d = expanded_d
# print("expanded_d shape2", d.shape, d[0][0][:10])
return recycling_linear(d)
def forward(
self,
token_mask: torch.Tensor,
protein_mask: torch.Tensor,
ligand_mask: torch.Tensor,
target_feat: torch.Tensor,
ligand_bonds_feat: torch.Tensor,
input_positions: torch.Tensor,
protein_residue_index: torch.Tensor,
protein_distogram_mask: torch.Tensor,
inplace_safe: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
batch: Dict containing
"protein_target_feat":
Features of shape [*, N_res + N_lig_atoms, tf_dim]
"residue_index":
Features of shape [*, N_res]
input_protein_coords:
[*, N_res, 3] AF predicted C_beta coordinates supplied as input
ligand_bonds_feat:
[*, N_lig_atoms, N_lig_atoms, tf_dim] ligand bonds features
Returns:
single_emb:
[*, N_res + N_lig_atoms, C_m] single embedding
pair_emb:
[*, N_res + N_lig_atoms, N_res + N_lig_atoms, C_z] pair embedding
"""
device = token_mask.device
pair_protein_mask = protein_mask[..., None] * protein_mask[..., None, :]
pair_ligand_mask = ligand_mask[..., None] * ligand_mask[..., None, :]
# Single representation embedding - Algorithm 3
tf_m = self.linear_tf_m(target_feat)
tf_m = self.layer_norm_m(tf_m) # previously this happend in the do_recycle function
# Pair representation
# protein pair embedding - Algorithm 3
# [*, N_res, c_z]
tf_emb_i = self.linear_tf_z_i(target_feat)
tf_emb_j = self.linear_tf_z_j(target_feat)
pair_emb = torch.zeros(*pair_protein_mask.shape, self.c_z, device=device)
pair_emb = add(pair_emb, tf_emb_i[..., None, :], inplace=inplace_safe)
pair_emb = add(pair_emb, tf_emb_j[..., None, :, :], inplace=inplace_safe)
# Apply relpos
relpos = self.relpos(protein_residue_index.type(tf_emb_i.dtype))
pair_emb += pair_protein_mask[..., None] * relpos
del relpos
# apply ligand bonds
ligand_bonds = self.ligand_linear_bond_z(ligand_bonds_feat)
pair_emb += pair_ligand_mask[..., None] * ligand_bonds
del ligand_bonds
# before recycles, do z_norm, this previously was a part of the recycles
pair_emb = self.layer_norm_z(pair_emb)
# apply protein recycle
prot_distogram_embed = self._get_binned_distogram(input_positions, self.prot_min_bin, self.prot_max_bin,
self.prot_no_bins, self.prot_recycling_linear,
protein_distogram_mask)
pair_emb = add(pair_emb, prot_distogram_embed * pair_protein_mask.unsqueeze(-1), inplace_safe)
del prot_distogram_embed
# apply ligand recycle
lig_distogram_embed = self._get_binned_distogram(input_positions, self.lig_min_bin, self.lig_max_bin,
self.lig_no_bins, self.lig_recycling_linear)
pair_emb = add(pair_emb, lig_distogram_embed * pair_ligand_mask.unsqueeze(-1), inplace_safe)
del lig_distogram_embed
return tf_m, pair_emb
class RecyclingEmbedder(nn.Module):
"""
Embeds the output of an iteration of the model for recycling.
Implements Algorithm 32.
"""
def __init__(
self,
c_m: int,
c_z: int,
min_bin: float,
max_bin: float,
no_bins: int,
inf: float = 1e8,
**kwargs,
):
"""
Args:
c_m:
Single channel dimension
c_z:
Pair embedding channel dimension
min_bin:
Smallest distogram bin (Angstroms)
max_bin:
Largest distogram bin (Angstroms)
no_bins:
Number of distogram bins
"""
super(RecyclingEmbedder, self).__init__()
self.c_m = c_m
self.c_z = c_z
self.min_bin = min_bin
self.max_bin = max_bin
self.no_bins = no_bins
self.inf = inf
self.linear = Linear(self.no_bins, self.c_z)
self.layer_norm_m = LayerNorm(self.c_m)
self.layer_norm_z = LayerNorm(self.c_z)
def forward(
self,
m: torch.Tensor,
z: torch.Tensor,
x: torch.Tensor,
inplace_safe: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
m:
First row of the single embedding. [*, N_res, C_m]
z:
[*, N_res, N_res, C_z] pair embedding
x:
[*, N_res, 3] predicted C_beta coordinates
Returns:
m:
[*, N_res, C_m] single embedding update
z:
[*, N_res, N_res, C_z] pair embedding update
"""
# [*, N, C_m]
m_update = self.layer_norm_m(m)
if(inplace_safe):
m.copy_(m_update)
m_update = m
# [*, N, N, C_z]
z_update = self.layer_norm_z(z)
if(inplace_safe):
z.copy_(z_update)
z_update = z
# This squared method might become problematic in FP16 mode.
bins = torch.linspace(
self.min_bin,
self.max_bin,
self.no_bins,
dtype=x.dtype,
device=x.device,
requires_grad=False,
)
squared_bins = bins ** 2
upper = torch.cat(
[squared_bins[1:], squared_bins.new_tensor([self.inf])], dim=-1
)
d = torch.sum(
(x[..., None, :] - x[..., None, :, :]) ** 2, dim=-1, keepdims=True
)
# [*, N, N, no_bins]
d = ((d > squared_bins) * (d < upper)).type(x.dtype)
# [*, N, N, C_z]
d = self.linear(d)
z_update = add(z_update, d, inplace_safe)
return m_update, z_update
|