Spaces:
Running
Running
File size: 13,423 Bytes
bca3a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import sys
import torch
import torch.nn as nn
from typing import Tuple, Sequence, Optional
from functools import partial
from abc import ABC, abstractmethod
from dockformer.model.primitives import Linear, LayerNorm
from dockformer.model.dropout import DropoutRowwise
from dockformer.model.single_attention import SingleRowAttentionWithPairBias
from dockformer.model.pair_transition import PairTransition
from dockformer.model.triangular_attention import (
TriangleAttention,
)
from dockformer.model.triangular_multiplicative_update import (
TriangleMultiplicationOutgoing,
TriangleMultiplicationIncoming,
)
from dockformer.utils.checkpointing import checkpoint_blocks
from dockformer.utils.tensor_utils import add
class SingleRepTransition(nn.Module):
"""
Feed-forward network applied to single representation activations after attention.
Implements Algorithm 9
"""
def __init__(self, c_m, n):
"""
Args:
c_m:
channel dimension
n:
Factor multiplied to c_m to obtain the hidden channel dimension
"""
super(SingleRepTransition, self).__init__()
self.c_m = c_m
self.n = n
self.layer_norm = LayerNorm(self.c_m)
self.linear_1 = Linear(self.c_m, self.n * self.c_m, init="relu")
self.relu = nn.ReLU()
self.linear_2 = Linear(self.n * self.c_m, self.c_m, init="final")
def _transition(self, m, mask):
m = self.layer_norm(m)
m = self.linear_1(m)
m = self.relu(m)
m = self.linear_2(m) * mask
return m
def forward(
self,
m: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
m:
[*, N_res, C_m] activation after attention
mask:
[*, N_res, C_m] mask
Returns:
m:
[*, N_res, C_m] activation update
"""
# DISCREPANCY: DeepMind forgets to apply the mask here.
if mask is None:
mask = m.new_ones(m.shape[:-1])
mask = mask.unsqueeze(-1)
m = self._transition(m, mask)
return m
class PairStack(nn.Module):
def __init__(
self,
c_z: int,
c_hidden_mul: int,
c_hidden_pair_att: int,
no_heads_pair: int,
transition_n: int,
pair_dropout: float,
inf: float,
eps: float
):
super(PairStack, self).__init__()
self.tri_mul_out = TriangleMultiplicationOutgoing(
c_z,
c_hidden_mul,
)
self.tri_mul_in = TriangleMultiplicationIncoming(
c_z,
c_hidden_mul,
)
self.tri_att_start = TriangleAttention(
c_z,
c_hidden_pair_att,
no_heads_pair,
inf=inf,
)
self.tri_att_end = TriangleAttention(
c_z,
c_hidden_pair_att,
no_heads_pair,
inf=inf,
)
self.pair_transition = PairTransition(
c_z,
transition_n,
)
self.ps_dropout_row_layer = DropoutRowwise(pair_dropout)
def forward(self,
z: torch.Tensor,
pair_mask: torch.Tensor,
use_lma: bool = False,
inplace_safe: bool = False,
_mask_trans: bool = True,
) -> torch.Tensor:
# DeepMind doesn't mask these transitions in the source, so _mask_trans
# should be disabled to better approximate the exact activations of
# the original.
pair_trans_mask = pair_mask if _mask_trans else None
tmu_update = self.tri_mul_out(
z,
mask=pair_mask,
inplace_safe=inplace_safe,
_add_with_inplace=True,
)
if (not inplace_safe):
z = z + self.ps_dropout_row_layer(tmu_update)
else:
z = tmu_update
del tmu_update
tmu_update = self.tri_mul_in(
z,
mask=pair_mask,
inplace_safe=inplace_safe,
_add_with_inplace=True,
)
if (not inplace_safe):
z = z + self.ps_dropout_row_layer(tmu_update)
else:
z = tmu_update
del tmu_update
z = add(z,
self.ps_dropout_row_layer(
self.tri_att_start(
z,
mask=pair_mask,
use_memory_efficient_kernel=False,
use_lma=use_lma,
)
),
inplace=inplace_safe,
)
z = z.transpose(-2, -3)
if (inplace_safe):
z = z.contiguous()
z = add(z,
self.ps_dropout_row_layer(
self.tri_att_end(
z,
mask=pair_mask.transpose(-1, -2),
use_memory_efficient_kernel=False,
use_lma=use_lma,
)
),
inplace=inplace_safe,
)
z = z.transpose(-2, -3)
if (inplace_safe):
z = z.contiguous()
z = add(z,
self.pair_transition(
z, mask=pair_trans_mask,
),
inplace=inplace_safe,
)
return z
class EvoformerBlock(nn.Module, ABC):
def __init__(self,
c_m: int,
c_z: int,
c_hidden_single_att: int,
c_hidden_mul: int,
c_hidden_pair_att: int,
no_heads_single: int,
no_heads_pair: int,
transition_n: int,
single_dropout: float,
pair_dropout: float,
inf: float,
eps: float,
):
super(EvoformerBlock, self).__init__()
self.single_att_row = SingleRowAttentionWithPairBias(
c_m=c_m,
c_z=c_z,
c_hidden=c_hidden_single_att,
no_heads=no_heads_single,
inf=inf,
)
self.single_dropout_layer = DropoutRowwise(single_dropout)
self.single_transition = SingleRepTransition(
c_m=c_m,
n=transition_n,
)
self.pair_stack = PairStack(
c_z=c_z,
c_hidden_mul=c_hidden_mul,
c_hidden_pair_att=c_hidden_pair_att,
no_heads_pair=no_heads_pair,
transition_n=transition_n,
pair_dropout=pair_dropout,
inf=inf,
eps=eps
)
def forward(self,
m: Optional[torch.Tensor],
z: Optional[torch.Tensor],
single_mask: torch.Tensor,
pair_mask: torch.Tensor,
use_lma: bool = False,
inplace_safe: bool = False,
_mask_trans: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor]:
single_trans_mask = single_mask if _mask_trans else None
input_tensors = [m, z]
m, z = input_tensors
z = self.pair_stack(
z=z,
pair_mask=pair_mask,
use_lma=use_lma,
inplace_safe=inplace_safe,
_mask_trans=_mask_trans,
)
m = add(m,
self.single_dropout_layer(
self.single_att_row(
m,
z=z,
mask=single_mask,
use_memory_efficient_kernel=False,
use_lma=use_lma,
)
),
inplace=inplace_safe,
)
m = add(m, self.single_transition(m, mask=single_mask), inplace=inplace_safe)
return m, z
class EvoformerStack(nn.Module):
"""
Main Evoformer trunk.
Implements Algorithm 6.
"""
def __init__(
self,
c_m: int,
c_z: int,
c_hidden_single_att: int,
c_hidden_mul: int,
c_hidden_pair_att: int,
c_s: int,
no_heads_single: int,
no_heads_pair: int,
no_blocks: int,
transition_n: int,
single_dropout: float,
pair_dropout: float,
blocks_per_ckpt: int,
inf: float,
eps: float,
clear_cache_between_blocks: bool = False,
**kwargs,
):
"""
Args:
c_m:
single channel dimension
c_z:
Pair channel dimension
c_hidden_single_att:
Hidden dimension in single representation attention
c_hidden_mul:
Hidden dimension in multiplicative updates
c_hidden_pair_att:
Hidden dimension in triangular attention
c_s:
Channel dimension of the output "single" embedding
no_heads_single:
Number of heads used for single attention
no_heads_pair:
Number of heads used for pair attention
no_blocks:
Number of Evoformer blocks in the stack
transition_n:
Factor by which to multiply c_m to obtain the SingleTransition
hidden dimension
single_dropout:
Dropout rate for single activations
pair_dropout:
Dropout used for pair activations
blocks_per_ckpt:
Number of Evoformer blocks in each activation checkpoint
clear_cache_between_blocks:
Whether to clear CUDA's GPU memory cache between blocks of the
stack. Slows down each block but can reduce fragmentation
"""
super(EvoformerStack, self).__init__()
self.blocks_per_ckpt = blocks_per_ckpt
self.clear_cache_between_blocks = clear_cache_between_blocks
self.blocks = nn.ModuleList()
for _ in range(no_blocks):
block = EvoformerBlock(
c_m=c_m,
c_z=c_z,
c_hidden_single_att=c_hidden_single_att,
c_hidden_mul=c_hidden_mul,
c_hidden_pair_att=c_hidden_pair_att,
no_heads_single=no_heads_single,
no_heads_pair=no_heads_pair,
transition_n=transition_n,
single_dropout=single_dropout,
pair_dropout=pair_dropout,
inf=inf,
eps=eps,
)
self.blocks.append(block)
self.linear = Linear(c_m, c_s)
def _prep_blocks(self,
use_lma: bool,
single_mask: Optional[torch.Tensor],
pair_mask: Optional[torch.Tensor],
inplace_safe: bool,
_mask_trans: bool,
):
blocks = [
partial(
b,
single_mask=single_mask,
pair_mask=pair_mask,
use_lma=use_lma,
inplace_safe=inplace_safe,
_mask_trans=_mask_trans,
)
for b in self.blocks
]
if self.clear_cache_between_blocks:
def block_with_cache_clear(block, *args, **kwargs):
torch.cuda.empty_cache()
return block(*args, **kwargs)
blocks = [partial(block_with_cache_clear, b) for b in blocks]
return blocks
def forward(self,
m: torch.Tensor,
z: torch.Tensor,
single_mask: torch.Tensor,
pair_mask: torch.Tensor,
use_lma: bool = False,
inplace_safe: bool = False,
_mask_trans: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
m:
[*, N_res, C_m] single embedding
z:
[*, N_res, N_res, C_z] pair embedding
single_mask:
[*, N_res] single mask
pair_mask:
[*, N_res, N_res] pair mask
use_lma:
Whether to use low-memory attention during inference.
Returns:
m:
[*, N_res, C_m] single embedding
z:
[*, N_res, N_res, C_z] pair embedding
s:
[*, N_res, C_s] single embedding after linear layer
"""
blocks = self._prep_blocks(
use_lma=use_lma,
single_mask=single_mask,
pair_mask=pair_mask,
inplace_safe=inplace_safe,
_mask_trans=_mask_trans,
)
blocks_per_ckpt = self.blocks_per_ckpt
if(not torch.is_grad_enabled()):
blocks_per_ckpt = None
m, z = checkpoint_blocks(
blocks,
args=(m, z),
blocks_per_ckpt=blocks_per_ckpt,
)
s = self.linear(m)
return m, z, s
|