File size: 2,276 Bytes
bca3a49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional

import torch
import torch.nn as nn

from dockformer.model.primitives import Linear, LayerNorm


class PairTransition(nn.Module):
    """
    Implements Algorithm 15.
    """

    def __init__(self, c_z, n):
        """
        Args:
            c_z:
                Pair transition channel dimension
            n:
                Factor by which c_z is multiplied to obtain hidden channel
                dimension
        """
        super(PairTransition, self).__init__()

        self.c_z = c_z
        self.n = n

        self.layer_norm = LayerNorm(self.c_z)
        self.linear_1 = Linear(self.c_z, self.n * self.c_z, init="relu")
        self.relu = nn.ReLU()
        self.linear_2 = Linear(self.n * self.c_z, c_z, init="final")

    def _transition(self, z, mask):
        # [*, N_res, N_res, C_z]
        z = self.layer_norm(z)
        
        # [*, N_res, N_res, C_hidden]
        z = self.linear_1(z)
        z = self.relu(z)

        # [*, N_res, N_res, C_z]
        z = self.linear_2(z) 
        z = z * mask

        return z

    def forward(self, 
        z: torch.Tensor, 
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        """
        Args:
            z:
                [*, N_res, N_res, C_z] pair embedding
        Returns:
            [*, N_res, N_res, C_z] pair embedding update
        """
        # DISCREPANCY: DeepMind forgets to apply the mask in this module.
        if mask is None:
            mask = z.new_ones(z.shape[:-1])

        # [*, N_res, N_res, 1]
        mask = mask.unsqueeze(-1)

        z = self._transition(z=z, mask=mask)

        return z