Spaces:
Running
Running
add script used to generate dataset
Browse files
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore __pycache__ folders
|
2 |
+
__pycache__/
|
3 |
+
.idea/
|
4 |
+
|
5 |
+
# Ignore .DS_Store files
|
6 |
+
.DS_Store
|
env_consts.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
TEST_INPUT_DIR = None
|
4 |
TEST_OUTPUT_DIR = None
|
5 |
THIS_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
|
6 |
-
CKPT_PATH = os.path.join(THIS_FILE_DIR, "resources", "
|
7 |
RUN_CONFIG_PATH = os.path.join(THIS_FILE_DIR, "resources", "run_config.json")
|
8 |
|
9 |
OUTPUT_PROT_PATH = os.path.join(THIS_FILE_DIR, "predicted_protein_out.pdb")
|
|
|
3 |
TEST_INPUT_DIR = None
|
4 |
TEST_OUTPUT_DIR = None
|
5 |
THIS_FILE_DIR = os.path.dirname(os.path.abspath(__file__))
|
6 |
+
CKPT_PATH = os.path.join(THIS_FILE_DIR, "resources", "only_weights_107-187000.ckpt")
|
7 |
RUN_CONFIG_PATH = os.path.join(THIS_FILE_DIR, "resources", "run_config.json")
|
8 |
|
9 |
OUTPUT_PROT_PATH = os.path.join(THIS_FILE_DIR, "predicted_protein_out.pdb")
|
prepare_plinder_dataset.py
ADDED
@@ -0,0 +1,807 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import random
|
5 |
+
import sys
|
6 |
+
import time
|
7 |
+
from typing import List, Tuple, Optional
|
8 |
+
|
9 |
+
import Bio.PDB
|
10 |
+
import Bio.SeqUtils
|
11 |
+
import pandas as pd
|
12 |
+
import numpy as np
|
13 |
+
import requests
|
14 |
+
from rdkit import Chem
|
15 |
+
from rdkit.Chem import AllChem
|
16 |
+
|
17 |
+
|
18 |
+
BASE_FOLDER = "/tmp/"
|
19 |
+
|
20 |
+
OUTPUT_FOLDER = f"{BASE_FOLDER}/processed"
|
21 |
+
# https://storage.googleapis.com/plinder/2024-06/v2/index/annotation_table.parquet
|
22 |
+
PLINDER_ANNOTATIONS = f'{BASE_FOLDER}/raw_data/2024-06_v2_index_annotation_table.parquet'
|
23 |
+
# https://storage.googleapis.com/plinder/2024-06/v2/splits/split.parquet
|
24 |
+
PLINDER_SPLITS = f'{BASE_FOLDER}/raw_data/2024-06_v2_splits_split.parquet'
|
25 |
+
|
26 |
+
# https://console.cloud.google.com/storage/browser/_details/plinder/2024-06/v2/links/kind%3Dapo/links.parquet
|
27 |
+
PLINDER_LINKED_APO_MAP = f"{BASE_FOLDER}/raw_data/2024-06_v2_links_kind=apo_links.parquet"
|
28 |
+
# https://console.cloud.google.com/storage/browser/_details/plinder/2024-06/v2/links/kind%3Dpred/links.parquet
|
29 |
+
PLINDER_LINKED_PRED_MAP = f"{BASE_FOLDER}/raw_data/2024-06_v2_links_kind=pred_links.parquet"
|
30 |
+
# https://storage.googleapis.com/plinder/2024-06/v2/linked_structures/apo.zip
|
31 |
+
PLINDER_LINKED_APO_STRUCTURES = f"{BASE_FOLDER}/raw_data/2024-06_v2_linked_structures_apo"
|
32 |
+
# https://storage.googleapis.com/plinder/2024-06/v2/linked_structures/pred.zip
|
33 |
+
PLINDER_LINKED_PRED_STRUCTURES = f"{BASE_FOLDER}/raw_data/2024-06_v2_linked_structures_pred"
|
34 |
+
GSUTIL_PATH = f"{BASE_FOLDER}/google-cloud-sdk/bin/gsutil"
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
def get_cached_systems_to_train(recompute=False):
|
39 |
+
output_path = os.path.join(OUTPUT_FOLDER, "to_train.pickle")
|
40 |
+
if os.path.exists(output_path) and not recompute:
|
41 |
+
return pd.read_pickle(output_path)
|
42 |
+
|
43 |
+
"""
|
44 |
+
full:
|
45 |
+
loaded 1357906 409726 163816 433865
|
46 |
+
loaded 990260 409726 125818 106411
|
47 |
+
joined splits 409726
|
48 |
+
Has splits 311008
|
49 |
+
unique systems 311008
|
50 |
+
split
|
51 |
+
train 309140
|
52 |
+
test 1036
|
53 |
+
val 832
|
54 |
+
Name: count, dtype: int64
|
55 |
+
Has affinity 36856
|
56 |
+
Has affinity by splits split
|
57 |
+
train 36598
|
58 |
+
test 142
|
59 |
+
val 116
|
60 |
+
Name: count, dtype: int64
|
61 |
+
Total systems before pred 311008
|
62 |
+
Total systems after pred 311008
|
63 |
+
Has pred 83487
|
64 |
+
Has apo 75127
|
65 |
+
Has both 51506
|
66 |
+
Has either 107108
|
67 |
+
columns Index(['system_id', 'entry_pdb_id', 'ligand_binding_affinity',
|
68 |
+
'entry_release_date', 'system_pocket_UniProt',
|
69 |
+
'system_num_protein_chains', 'system_num_ligand_chains', 'uniqueness',
|
70 |
+
'split', 'cluster', 'cluster_for_val_split',
|
71 |
+
'system_pass_validation_criteria', 'system_pass_statistics_criteria',
|
72 |
+
'system_proper_num_ligand_chains', 'system_proper_pocket_num_residues',
|
73 |
+
'system_proper_num_interactions',
|
74 |
+
'system_proper_ligand_max_molecular_weight',
|
75 |
+
'system_has_binding_affinity', 'system_has_apo_or_pred', '_bucket_id',
|
76 |
+
'linked_pred_id', 'linked_apo_id'],
|
77 |
+
dtype='object')
|
78 |
+
total systems 311008
|
79 |
+
"""
|
80 |
+
|
81 |
+
systems = pd.read_parquet(PLINDER_ANNOTATIONS,
|
82 |
+
columns=['system_id', 'entry_pdb_id', 'ligand_binding_affinity',
|
83 |
+
'entry_release_date', 'system_pocket_UniProt', 'entry_resolution',
|
84 |
+
'system_num_protein_chains', 'system_num_ligand_chains'])
|
85 |
+
splits = pd.read_parquet(PLINDER_SPLITS)
|
86 |
+
linked_pred = pd.read_parquet(PLINDER_LINKED_PRED_MAP)
|
87 |
+
linked_apo = pd.read_parquet(PLINDER_LINKED_APO_MAP)
|
88 |
+
|
89 |
+
print("loaded", len(systems), len(splits), len(linked_pred), len(linked_apo))
|
90 |
+
|
91 |
+
# remove duplicated
|
92 |
+
systems = systems.drop_duplicates(subset=['system_id'])
|
93 |
+
splits = splits.drop_duplicates(subset=['system_id'])
|
94 |
+
linked_pred = linked_pred.drop_duplicates(subset=['reference_system_id'])
|
95 |
+
linked_apo = linked_apo.drop_duplicates(subset=['reference_system_id'])
|
96 |
+
print("loaded", len(systems), len(splits), len(linked_pred), len(linked_apo))
|
97 |
+
|
98 |
+
# join splits
|
99 |
+
systems = pd.merge(systems, splits, on='system_id', how='inner')
|
100 |
+
print("joined splits", len(systems))
|
101 |
+
|
102 |
+
systems['_bucket_id'] = systems['entry_pdb_id'].str[1:3]
|
103 |
+
|
104 |
+
# leave only with train/val/test splits
|
105 |
+
systems = systems[systems['split'].isin(['train', 'val', 'test'])]
|
106 |
+
|
107 |
+
print("Has splits", len(systems))
|
108 |
+
print("unique systems", systems['system_id'].nunique())
|
109 |
+
print(systems["split"].value_counts())
|
110 |
+
|
111 |
+
print("Has affinity", len(systems[systems['ligand_binding_affinity'].notna()]))
|
112 |
+
|
113 |
+
# print has affinity by splits
|
114 |
+
print("Has affinity by splits", systems[systems['ligand_binding_affinity'].notna()]['split'].value_counts())
|
115 |
+
|
116 |
+
print("Total systems before pred", len(systems))
|
117 |
+
# join linked structures - allow to not have linked structures
|
118 |
+
systems = pd.merge(systems, linked_pred[['reference_system_id', 'id']],
|
119 |
+
left_on='system_id', right_on='reference_system_id',
|
120 |
+
how='left')
|
121 |
+
print("Total systems after pred", len(systems))
|
122 |
+
|
123 |
+
# Rename the 'id' column from linked_pred to 'linked_pred_id'
|
124 |
+
systems.rename(columns={'id': 'linked_pred_id'}, inplace=True)
|
125 |
+
|
126 |
+
# Merge the result with linked_apo on the same condition
|
127 |
+
systems = pd.merge(systems, linked_apo[['reference_system_id', 'id']],
|
128 |
+
left_on='system_id', right_on='reference_system_id',
|
129 |
+
how='left')
|
130 |
+
|
131 |
+
# Rename the 'id' column from linked_apo to 'linked_apo_id'
|
132 |
+
systems.rename(columns={'id': 'linked_apo_id'}, inplace=True)
|
133 |
+
|
134 |
+
# Drop the reference_system_id columns that were added during the merge
|
135 |
+
systems.drop(columns=['reference_system_id_x', 'reference_system_id_y'], inplace=True)
|
136 |
+
|
137 |
+
cluster_sizes = systems["cluster"].value_counts()
|
138 |
+
systems["cluster_size"] = systems["cluster"].map(cluster_sizes)
|
139 |
+
# print(systems[['system_id', 'cluster', 'cluster_size']])
|
140 |
+
|
141 |
+
print("Has pred", systems['linked_pred_id'].notna().sum())
|
142 |
+
print("Has apo", systems['linked_apo_id'].notna().sum())
|
143 |
+
print("Has both", (systems['linked_pred_id'].notna() & systems['linked_apo_id'].notna()).sum())
|
144 |
+
print("Has either", (systems['linked_pred_id'].notna() | systems['linked_apo_id'].notna()).sum())
|
145 |
+
|
146 |
+
print("columns", systems.columns)
|
147 |
+
|
148 |
+
systems.to_pickle(output_path)
|
149 |
+
return systems
|
150 |
+
|
151 |
+
|
152 |
+
def create_conformers(smiles, output_path, num_conformers=100, multiplier_samples=1):
|
153 |
+
target_mol = Chem.MolFromSmiles(smiles)
|
154 |
+
target_mol = Chem.AddHs(target_mol)
|
155 |
+
|
156 |
+
params = AllChem.ETKDGv3()
|
157 |
+
params.numThreads = 0 # Use all available threads
|
158 |
+
params.pruneRmsThresh = 0.1 # Pruning threshold for RMSD
|
159 |
+
conformer_ids = AllChem.EmbedMultipleConfs(target_mol, numConfs=num_conformers * multiplier_samples, params=params)
|
160 |
+
|
161 |
+
# Optional: Optimize each conformer using MMFF94 force field
|
162 |
+
# for conf_id in conformer_ids:
|
163 |
+
# AllChem.UFFOptimizeMolecule(target_mol, confId=conf_id)
|
164 |
+
|
165 |
+
# remove hydrogen atoms
|
166 |
+
target_mol = Chem.RemoveHs(target_mol)
|
167 |
+
|
168 |
+
# Save aligned conformers to a file (optional)
|
169 |
+
w = Chem.SDWriter(output_path)
|
170 |
+
for i, conf_id in enumerate(conformer_ids):
|
171 |
+
if i >= num_conformers:
|
172 |
+
break
|
173 |
+
w.write(target_mol, confId=conf_id)
|
174 |
+
w.close()
|
175 |
+
|
176 |
+
|
177 |
+
def do_robust_chain_object_renumber(chain: Bio.PDB.Chain.Chain, new_chain_id: str) -> Optional[Bio.PDB.Chain.Chain]:
|
178 |
+
all_residues = [res for res in chain.get_residues()
|
179 |
+
if "CA" in res and Bio.SeqUtils.seq1(res.get_resname()) not in ("X", "", " ")]
|
180 |
+
if not all_residues:
|
181 |
+
return None
|
182 |
+
|
183 |
+
res_and_res_id = [(res, res.get_id()[1]) for res in all_residues]
|
184 |
+
|
185 |
+
min_res_id = min([i[1] for i in res_and_res_id])
|
186 |
+
if min_res_id < 1:
|
187 |
+
print("Negative res id", chain, min_res_id)
|
188 |
+
factor = -1 * min_res_id + 1
|
189 |
+
res_and_res_id = [(res, res_id + factor) for res, res_id in res_and_res_id]
|
190 |
+
|
191 |
+
res_and_res_id_no_collisions = []
|
192 |
+
for res, res_id in res_and_res_id[::-1]:
|
193 |
+
if res_and_res_id_no_collisions and res_and_res_id_no_collisions[-1][1] == res_id:
|
194 |
+
# there is a collision, usually an insertion residue
|
195 |
+
res_and_res_id_no_collisions = [(i, j + 1) for i, j in res_and_res_id_no_collisions]
|
196 |
+
res_and_res_id_no_collisions.append((res, res_id))
|
197 |
+
|
198 |
+
first_res_id = min([i[1] for i in res_and_res_id_no_collisions])
|
199 |
+
factor = 1 - first_res_id # start from 1
|
200 |
+
new_chain = Bio.PDB.Chain.Chain(new_chain_id)
|
201 |
+
|
202 |
+
res_and_res_id_no_collisions.sort(key=lambda x: x[1])
|
203 |
+
|
204 |
+
for res, res_id in res_and_res_id_no_collisions:
|
205 |
+
chain.detach_child(res.id)
|
206 |
+
res.id = (" ", res_id + factor, " ")
|
207 |
+
new_chain.add(res)
|
208 |
+
|
209 |
+
return new_chain
|
210 |
+
|
211 |
+
|
212 |
+
def robust_renumber_protein(pdb_path: str, output_path: str):
|
213 |
+
if pdb_path.endswith(".pdb"):
|
214 |
+
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
|
215 |
+
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
|
216 |
+
elif pdb_path.endswith(".cif"):
|
217 |
+
pdb_struct = Bio.PDB.MMCIFParser().get_structure("original_pdb", pdb_path)
|
218 |
+
else:
|
219 |
+
raise ValueError("Unknown file type", pdb_path)
|
220 |
+
assert len(list(pdb_struct)) == 1, "can't extract if more than one model"
|
221 |
+
model = next(iter(pdb_struct))
|
222 |
+
chains = list(model.get_chains())
|
223 |
+
new_model = Bio.PDB.Model.Model(0)
|
224 |
+
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
|
225 |
+
for chain, chain_id in zip(chains, chain_ids):
|
226 |
+
new_chain = do_robust_chain_object_renumber(chain, chain_id)
|
227 |
+
if new_chain is None:
|
228 |
+
continue
|
229 |
+
new_model.add(new_chain)
|
230 |
+
new_struct = Bio.PDB.Structure.Structure("renumbered_pdb")
|
231 |
+
new_struct.add(new_model)
|
232 |
+
io = Bio.PDB.PDBIO()
|
233 |
+
io.set_structure(new_struct)
|
234 |
+
io.save(output_path)
|
235 |
+
|
236 |
+
|
237 |
+
def _get_extra(extra_to_save: int, res_before: List[int], res_after: List[int]) -> set:
|
238 |
+
take_from_before = random.randint(0, extra_to_save)
|
239 |
+
take_from_after = extra_to_save - take_from_before
|
240 |
+
if take_from_before > len(res_before):
|
241 |
+
take_from_after = extra_to_save - len(res_before)
|
242 |
+
take_from_before = len(res_before)
|
243 |
+
if take_from_after > len(res_after):
|
244 |
+
take_from_before = extra_to_save - len(res_after)
|
245 |
+
take_from_after = len(res_after)
|
246 |
+
|
247 |
+
extra_to_add = set()
|
248 |
+
if take_from_before > 0:
|
249 |
+
extra_to_add.update(res_before[-take_from_before:])
|
250 |
+
extra_to_add.update(res_after[:take_from_after])
|
251 |
+
|
252 |
+
return extra_to_add
|
253 |
+
|
254 |
+
|
255 |
+
def crop_protein_cont(gt_pdb_path: str, ligand_pos: np.ndarray, output_path: str, max_length: int,
|
256 |
+
distance_threshold: float):
|
257 |
+
protein = Chem.MolFromPDBFile(gt_pdb_path, sanitize=False)
|
258 |
+
ligand_size = ligand_pos.shape[0]
|
259 |
+
|
260 |
+
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
|
261 |
+
gt_model = next(iter(pdb_parser.get_structure("gt_pdb", gt_pdb_path)))
|
262 |
+
|
263 |
+
all_res_ids_by_chain = {chain.id: sorted([res.id[1] for res in chain.get_residues() if "CA" in res])
|
264 |
+
for chain in gt_model.get_chains()}
|
265 |
+
|
266 |
+
protein_conf = protein.GetConformer()
|
267 |
+
protein_pos = protein_conf.GetPositions()
|
268 |
+
protein_atoms = list(protein.GetAtoms())
|
269 |
+
assert len(protein_pos) == len(protein_atoms), f"Positions and atoms mismatch in {gt_pdb_path}"
|
270 |
+
|
271 |
+
inter_dists = ligand_pos[:, np.newaxis, :] - protein_pos[np.newaxis, :, :]
|
272 |
+
inter_dists = np.sqrt((inter_dists ** 2).sum(-1))
|
273 |
+
min_inter_dist_per_protein_atom = inter_dists.min(axis=0)
|
274 |
+
|
275 |
+
res_to_save_count = max_length - ligand_size
|
276 |
+
|
277 |
+
used_protein_idx = np.where(min_inter_dist_per_protein_atom < distance_threshold)[0]
|
278 |
+
pocket_residues_by_chain = {}
|
279 |
+
for idx in used_protein_idx:
|
280 |
+
res = protein_atoms[idx].GetPDBResidueInfo()
|
281 |
+
if res.GetIsHeteroAtom():
|
282 |
+
continue
|
283 |
+
if res.GetChainId() not in pocket_residues_by_chain:
|
284 |
+
pocket_residues_by_chain[res.GetChainId()] = set()
|
285 |
+
# get residue chain
|
286 |
+
pocket_residues_by_chain[res.GetChainId()].add(res.GetResidueNumber())
|
287 |
+
|
288 |
+
if not pocket_residues_by_chain:
|
289 |
+
print("No pocket residues found")
|
290 |
+
return -1
|
291 |
+
|
292 |
+
# print("pocket_residues_by_chain", pocket_residues_by_chain)
|
293 |
+
|
294 |
+
complete_pocket = []
|
295 |
+
extended_pocket_per_chain = {}
|
296 |
+
for chain_id, pocket_residues in pocket_residues_by_chain.items():
|
297 |
+
max_pocket_res = max(pocket_residues)
|
298 |
+
min_pocket_res = min(pocket_residues)
|
299 |
+
|
300 |
+
extended_pocket_per_chain[chain_id] = {res_id for res_id in all_res_ids_by_chain[chain_id]
|
301 |
+
if min_pocket_res <= res_id <= max_pocket_res}
|
302 |
+
for res_id in extended_pocket_per_chain[chain_id]:
|
303 |
+
complete_pocket.append((chain_id, res_id))
|
304 |
+
|
305 |
+
# print("extended_pocket_per_chain", pocket_residues_by_chain)
|
306 |
+
|
307 |
+
if len(complete_pocket) > res_to_save_count:
|
308 |
+
total_res_ids = sum([len(res_ids) for res_ids in all_res_ids_by_chain.values()])
|
309 |
+
total_pocket_res = sum([len(res_ids) for res_ids in pocket_residues_by_chain.values()])
|
310 |
+
print(f"Too many residues all: {total_res_ids} pocket:{total_pocket_res} {len(complete_pocket)} "
|
311 |
+
f"(ligand size: {ligand_size})")
|
312 |
+
return -1
|
313 |
+
|
314 |
+
extra_to_save = res_to_save_count - len(complete_pocket)
|
315 |
+
|
316 |
+
# divide extra_to_save between chains
|
317 |
+
for chain_id, pocket_residues in extended_pocket_per_chain.items():
|
318 |
+
extra_to_save_per_chain = extra_to_save // len(extended_pocket_per_chain)
|
319 |
+
res_before = [res_id for res_id in all_res_ids_by_chain[chain_id] if res_id < min(pocket_residues)]
|
320 |
+
res_after = [res_id for res_id in all_res_ids_by_chain[chain_id] if res_id > max(pocket_residues)]
|
321 |
+
extra_to_add = _get_extra(extra_to_save_per_chain, res_before, res_after)
|
322 |
+
for res_id in extra_to_add:
|
323 |
+
complete_pocket.append((chain_id, res_id))
|
324 |
+
|
325 |
+
total_res_ids = sum([len(res_ids) for res_ids in all_res_ids_by_chain.values()])
|
326 |
+
total_pocket_res = sum([len(res_ids) for res_ids in pocket_residues_by_chain.values()])
|
327 |
+
total_extended_res = sum([len(res_ids) for res_ids in extended_pocket_per_chain.values()])
|
328 |
+
print(f"Found valid pocket all: {total_res_ids} pocket:{total_pocket_res} {total_extended_res} "
|
329 |
+
f"{len(complete_pocket)} (ligand size: {ligand_size}) extra: {extra_to_save}")
|
330 |
+
# print("all_res_ids_by_chain", all_res_ids_by_chain)
|
331 |
+
# print("complete_pocket", sorted(complete_pocket))
|
332 |
+
|
333 |
+
res_to_remove = []
|
334 |
+
for res in gt_model.get_residues():
|
335 |
+
if (res.parent.id, res.id[1]) not in complete_pocket or res.id[0].strip() != "" or res.id[2].strip() != "":
|
336 |
+
res_to_remove.append(res)
|
337 |
+
for res in res_to_remove:
|
338 |
+
gt_model[res.parent.id].detach_child(res.id)
|
339 |
+
|
340 |
+
io = Bio.PDB.PDBIO()
|
341 |
+
io.set_structure(gt_model)
|
342 |
+
io.save(output_path)
|
343 |
+
|
344 |
+
return len(complete_pocket)
|
345 |
+
|
346 |
+
|
347 |
+
def crop_protein_simple(gt_pdb_path: str, ligand_pos: np.ndarray, output_path: str, max_length: int):
|
348 |
+
protein = Chem.MolFromPDBFile(gt_pdb_path, sanitize=False)
|
349 |
+
ligand_size = ligand_pos.shape[0]
|
350 |
+
res_to_save_count = max_length - ligand_size
|
351 |
+
|
352 |
+
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
|
353 |
+
gt_model = next(iter(pdb_parser.get_structure("gt_pdb", gt_pdb_path)))
|
354 |
+
|
355 |
+
protein_conf = protein.GetConformer()
|
356 |
+
protein_pos = protein_conf.GetPositions()
|
357 |
+
protein_atoms = list(protein.GetAtoms())
|
358 |
+
assert len(protein_pos) == len(protein_atoms), f"Positions and atoms mismatch in {gt_pdb_path}"
|
359 |
+
|
360 |
+
inter_dists = ligand_pos[:, np.newaxis, :] - protein_pos[np.newaxis, :, :]
|
361 |
+
inter_dists = np.sqrt((inter_dists ** 2).sum(-1))
|
362 |
+
min_inter_dist_per_protein_atom = inter_dists.min(axis=0)
|
363 |
+
|
364 |
+
protein_idx_by_dist = np.argsort(min_inter_dist_per_protein_atom)
|
365 |
+
pocket_residues_by_chain = {}
|
366 |
+
total_found = 0
|
367 |
+
for idx in protein_idx_by_dist:
|
368 |
+
res = protein_atoms[idx].GetPDBResidueInfo()
|
369 |
+
if res.GetIsHeteroAtom():
|
370 |
+
continue
|
371 |
+
|
372 |
+
if res.GetChainId() not in pocket_residues_by_chain:
|
373 |
+
pocket_residues_by_chain[res.GetChainId()] = set()
|
374 |
+
# get residue chain
|
375 |
+
pocket_residues_by_chain[res.GetChainId()].add(res.GetResidueNumber())
|
376 |
+
total_found = sum([len(res_ids) for res_ids in pocket_residues_by_chain.values()])
|
377 |
+
if total_found >= res_to_save_count:
|
378 |
+
break
|
379 |
+
print("saved with simple", total_found)
|
380 |
+
|
381 |
+
if not pocket_residues_by_chain:
|
382 |
+
print("No pocket residues found")
|
383 |
+
return -1
|
384 |
+
|
385 |
+
res_to_remove = []
|
386 |
+
for res in gt_model.get_residues():
|
387 |
+
if res.id[1] not in pocket_residues_by_chain.get(res.parent.id, set()) \
|
388 |
+
or res.id[0].strip() != "" or res.id[2].strip() != "":
|
389 |
+
res_to_remove.append(res)
|
390 |
+
for res in res_to_remove:
|
391 |
+
gt_model[res.parent.id].detach_child(res.id)
|
392 |
+
|
393 |
+
io = Bio.PDB.PDBIO()
|
394 |
+
io.set_structure(gt_model)
|
395 |
+
io.save(output_path)
|
396 |
+
|
397 |
+
return total_found
|
398 |
+
|
399 |
+
|
400 |
+
def cif_to_pdb(cif_path: str, pdb_path: str):
|
401 |
+
protein = Bio.PDB.MMCIFParser().get_structure("s_cif", cif_path)
|
402 |
+
io = Bio.PDB.PDBIO()
|
403 |
+
io.set_structure(protein)
|
404 |
+
io.save(pdb_path)
|
405 |
+
|
406 |
+
|
407 |
+
def get_chain_object_to_seq(chain: Bio.PDB.Chain.Chain) -> str:
|
408 |
+
res_id_to_res = {res.get_id()[1]: res for res in chain.get_residues() if "CA" in res}
|
409 |
+
|
410 |
+
if len(res_id_to_res) == 0:
|
411 |
+
print("skipping empty chain", chain.get_id())
|
412 |
+
return ""
|
413 |
+
seq = ""
|
414 |
+
for i in range(1, max(res_id_to_res) + 1):
|
415 |
+
if i in res_id_to_res:
|
416 |
+
seq += Bio.SeqUtils.seq1(res_id_to_res[i].get_resname())
|
417 |
+
else:
|
418 |
+
seq += "X"
|
419 |
+
return seq
|
420 |
+
|
421 |
+
|
422 |
+
def get_sequence_from_pdb(pdb_path: str) -> Tuple[str, List[int]]:
|
423 |
+
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
|
424 |
+
pdb_struct = pdb_parser.get_structure("original_pdb", pdb_path)
|
425 |
+
# chain_to_seq = {chain.id: get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()}
|
426 |
+
all_chain_seqs = [ get_chain_object_to_seq(chain) for chain in pdb_struct.get_chains()]
|
427 |
+
chain_lengths = [len(seq) for seq in all_chain_seqs]
|
428 |
+
return ("X" * 20).join(all_chain_seqs), chain_lengths
|
429 |
+
|
430 |
+
|
431 |
+
from Bio import PDB
|
432 |
+
from Bio import pairwise2
|
433 |
+
|
434 |
+
|
435 |
+
def extract_sequence(chain):
|
436 |
+
seq = ''
|
437 |
+
residues = []
|
438 |
+
for res in chain.get_residues():
|
439 |
+
seq_res = Bio.SeqUtils.seq1(res.get_resname())
|
440 |
+
if seq_res in ('X', "", " "):
|
441 |
+
continue
|
442 |
+
seq += seq_res
|
443 |
+
residues.append(res)
|
444 |
+
return seq, residues
|
445 |
+
|
446 |
+
|
447 |
+
def map_residues(alignment, residues_gt, residues_pred):
|
448 |
+
idx_gt = 0
|
449 |
+
idx_pred = 0
|
450 |
+
mapping = []
|
451 |
+
for i in range(len(alignment.seqA)):
|
452 |
+
aa_gt = alignment.seqA[i]
|
453 |
+
aa_pred = alignment.seqB[i]
|
454 |
+
res_gt = None
|
455 |
+
res_pred = None
|
456 |
+
if aa_gt != '-':
|
457 |
+
res_gt = residues_gt[idx_gt]
|
458 |
+
idx_gt += 1
|
459 |
+
if aa_pred != '-':
|
460 |
+
res_pred = residues_pred[idx_pred]
|
461 |
+
idx_pred +=1
|
462 |
+
if res_gt and res_pred:
|
463 |
+
mapping.append((res_gt, res_pred))
|
464 |
+
return mapping
|
465 |
+
|
466 |
+
|
467 |
+
class ResidueSelect(PDB.Select):
|
468 |
+
def __init__(self, residues_to_select):
|
469 |
+
self.residues_to_select = set(residues_to_select)
|
470 |
+
|
471 |
+
def accept_residue(self, residue):
|
472 |
+
return residue in self.residues_to_select
|
473 |
+
|
474 |
+
|
475 |
+
def align_gt_and_input(gt_pdb_path, input_pdb_path, output_gt_path, output_input_path):
|
476 |
+
parser = PDB.PDBParser(QUIET=True)
|
477 |
+
gt_structure = parser.get_structure('gt', gt_pdb_path)
|
478 |
+
pred_structure = parser.get_structure('pred', input_pdb_path)
|
479 |
+
matched_residues_gt = []
|
480 |
+
matched_residues_pred = []
|
481 |
+
|
482 |
+
used_chain_pred = []
|
483 |
+
total_mapping_size = 0
|
484 |
+
for chain_gt in gt_structure.get_chains():
|
485 |
+
seq_gt, residues_gt = extract_sequence(chain_gt)
|
486 |
+
best_alignment = None
|
487 |
+
best_chain_pred = None
|
488 |
+
best_score = -1
|
489 |
+
best_residues_pred = None
|
490 |
+
# Find the best matching chain in pred
|
491 |
+
for chain_pred in pred_structure.get_chains():
|
492 |
+
print("checking", chain_pred.get_id(), chain_gt.get_id())
|
493 |
+
if chain_pred in used_chain_pred:
|
494 |
+
continue
|
495 |
+
seq_pred, residues_pred = extract_sequence(chain_pred)
|
496 |
+
print(seq_gt)
|
497 |
+
print(seq_pred)
|
498 |
+
alignments = pairwise2.align.globalxx(seq_gt, seq_pred, one_alignment_only=True)
|
499 |
+
if not alignments:
|
500 |
+
continue
|
501 |
+
print("checking2", chain_pred.get_id(), chain_gt.get_id())
|
502 |
+
|
503 |
+
alignment = alignments[0]
|
504 |
+
score = alignment.score
|
505 |
+
if score > best_score:
|
506 |
+
best_score = score
|
507 |
+
best_alignment = alignment
|
508 |
+
best_chain_pred = chain_pred
|
509 |
+
best_residues_pred = residues_pred
|
510 |
+
if best_alignment:
|
511 |
+
mapping = map_residues(best_alignment, residues_gt, best_residues_pred)
|
512 |
+
total_mapping_size += len(mapping)
|
513 |
+
used_chain_pred.append(best_chain_pred)
|
514 |
+
for res_gt, res_pred in mapping:
|
515 |
+
matched_residues_gt.append(res_gt)
|
516 |
+
matched_residues_pred.append(res_pred)
|
517 |
+
else:
|
518 |
+
print(f"No matching chain found for chain {chain_gt.get_id()}")
|
519 |
+
print(f"Total mapping size: {total_mapping_size}")
|
520 |
+
|
521 |
+
# Write new PDB files with only matched residues
|
522 |
+
io = PDB.PDBIO()
|
523 |
+
io.set_structure(gt_structure)
|
524 |
+
io.save(output_gt_path, ResidueSelect(matched_residues_gt))
|
525 |
+
io.set_structure(pred_structure)
|
526 |
+
io.save(output_input_path, ResidueSelect(matched_residues_pred))
|
527 |
+
|
528 |
+
|
529 |
+
def validate_matching_input_gt(gt_pdb_path, input_pdb_path):
|
530 |
+
gt_residues = [res for res in PDB.PDBParser().get_structure('gt', gt_pdb_path).get_residues()]
|
531 |
+
input_residues = [res for res in PDB.PDBParser().get_structure('input', input_pdb_path).get_residues()]
|
532 |
+
|
533 |
+
if len(gt_residues) != len(input_residues):
|
534 |
+
print(f"Residue count mismatch: {len(gt_residues)} vs {len(input_residues)}")
|
535 |
+
return -1
|
536 |
+
|
537 |
+
for res_gt, res_input in zip(gt_residues, input_residues):
|
538 |
+
if res_gt.get_resname() != res_input.get_resname():
|
539 |
+
print(f"Residue name mismatch: {res_gt.get_resname()} vs {res_input.get_resname()}")
|
540 |
+
return -1
|
541 |
+
return len(input_residues)
|
542 |
+
|
543 |
+
|
544 |
+
def prepare_system(row, system_folder, output_models_folder, output_jsons_folder, should_overwrite=False):
|
545 |
+
output_json_path = os.path.join(output_jsons_folder, f"{row['system_id']}.json")
|
546 |
+
if os.path.exists(output_json_path) and not should_overwrite:
|
547 |
+
return "Already exists"
|
548 |
+
|
549 |
+
plinder_gt_pdb_path = os.path.join(system_folder, f"receptor.pdb")
|
550 |
+
plinder_gt_ligand_paths = []
|
551 |
+
plinder_gt_ligands_folder = os.path.join(system_folder, "ligand_files")
|
552 |
+
|
553 |
+
gt_output_path = os.path.join(output_models_folder, f"{row['system_id']}_gt.pdb")
|
554 |
+
gt_output_relative_path = "plinder_models/" + f"{row['system_id']}_gt.pdb"
|
555 |
+
|
556 |
+
tmp_input_path = os.path.join(output_models_folder, f"tmp_{row['system_id']}_input.pdb")
|
557 |
+
protein_input_path = os.path.join(output_models_folder, f"{row['system_id']}_input.pdb")
|
558 |
+
protein_input_relative_path = "plinder_models/" + f"{row['system_id']}_input.pdb"
|
559 |
+
|
560 |
+
print("Copying ground truth files")
|
561 |
+
if not os.path.exists(plinder_gt_pdb_path):
|
562 |
+
print("no receptor", plinder_gt_pdb_path)
|
563 |
+
return "No receptor"
|
564 |
+
|
565 |
+
tmp_gt_pdb_path = os.path.join(output_models_folder, f"tmp_{row['system_id']}_gt.pdb")
|
566 |
+
robust_renumber_protein(plinder_gt_pdb_path, tmp_gt_pdb_path)
|
567 |
+
|
568 |
+
ligand_pos_list = []
|
569 |
+
for ligand_file in os.listdir(plinder_gt_ligands_folder):
|
570 |
+
if not ligand_file.endswith(".sdf"):
|
571 |
+
continue
|
572 |
+
plinder_gt_ligand_paths.append(os.path.join(plinder_gt_ligands_folder, ligand_file))
|
573 |
+
loaded_ligand = Chem.MolFromMolFile(os.path.join(plinder_gt_ligands_folder, ligand_file))
|
574 |
+
ligand_pos_list.append(loaded_ligand.GetConformer().GetPositions())
|
575 |
+
if loaded_ligand is None:
|
576 |
+
print("failed to load", plinder_gt_ligand_paths[-1])
|
577 |
+
return "Failed to load ligand"
|
578 |
+
|
579 |
+
# Crop ground truth protein, also removes insertion codes
|
580 |
+
ligand_pos = np.concatenate(ligand_pos_list, axis=0)
|
581 |
+
|
582 |
+
res_count_in_protein = crop_protein_cont(tmp_gt_pdb_path, ligand_pos, gt_output_path, max_length=350,
|
583 |
+
distance_threshold=5)
|
584 |
+
if res_count_in_protein == -1:
|
585 |
+
print("Failed to crop protein continously, using simple crop")
|
586 |
+
crop_protein_simple(tmp_gt_pdb_path, ligand_pos, gt_output_path, max_length=350)
|
587 |
+
|
588 |
+
os.remove(tmp_gt_pdb_path)
|
589 |
+
|
590 |
+
# Generate input protein structure
|
591 |
+
input_protein_source = None
|
592 |
+
if pd.notna(row["linked_apo_id"]):
|
593 |
+
apo_pdb_path = os.path.join(PLINDER_LINKED_APO_STRUCTURES, f"{row['linked_apo_id']}.cif")
|
594 |
+
try:
|
595 |
+
robust_renumber_protein(apo_pdb_path, tmp_input_path)
|
596 |
+
input_protein_source = "apo"
|
597 |
+
print("Using input apo", row['linked_apo_id'])
|
598 |
+
except Exception as e:
|
599 |
+
print("Problem with apo", e, row["linked_apo_id"], apo_pdb_path)
|
600 |
+
if not os.path.exists(tmp_input_path) and pd.notna(row["linked_pred_id"]):
|
601 |
+
pred_pdb_path = os.path.join(PLINDER_LINKED_PRED_STRUCTURES, f"{row['linked_pred_id']}.cif")
|
602 |
+
try:
|
603 |
+
# cif_to_pdb(pred_pdb_path, tmp_input_path)
|
604 |
+
robust_renumber_protein(pred_pdb_path, tmp_input_path)
|
605 |
+
input_protein_source = "pred"
|
606 |
+
print("Using input pred", row['linked_pred_id'])
|
607 |
+
except:
|
608 |
+
print("Problem with pred")
|
609 |
+
if not os.path.exists(tmp_input_path):
|
610 |
+
print("No linked structure found, running ESM")
|
611 |
+
url = "https://api.esmatlas.com/foldSequence/v1/pdb/"
|
612 |
+
sequence, chain_lengths = get_sequence_from_pdb(gt_output_path)
|
613 |
+
if len(sequence) <= 400:
|
614 |
+
try:
|
615 |
+
response = requests.post(url, data=sequence)
|
616 |
+
response.raise_for_status()
|
617 |
+
pdb_text = response.text
|
618 |
+
with open(tmp_input_path, "w") as f:
|
619 |
+
f.write(pdb_text)
|
620 |
+
|
621 |
+
# divide to chains
|
622 |
+
if len(chain_lengths) > 1:
|
623 |
+
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
|
624 |
+
pdb_struct = pdb_parser.get_structure("original_pdb", tmp_input_path)
|
625 |
+
pdb_model = next(iter(pdb_struct))
|
626 |
+
chain_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"[:len(chain_lengths)]
|
627 |
+
start_ind = 1
|
628 |
+
esm_chain = next(pdb_model.get_chains())
|
629 |
+
new_model = Bio.PDB.Model.Model(0)
|
630 |
+
for chain_length, chain_id in zip(chain_lengths, chain_ids):
|
631 |
+
end_ind = start_ind + chain_length
|
632 |
+
new_chain = Bio.PDB.Chain.Chain(chain_id)
|
633 |
+
for res in esm_chain.get_residues():
|
634 |
+
if start_ind <= res.id[1] <= end_ind:
|
635 |
+
new_chain.add(res)
|
636 |
+
new_model.add(new_chain)
|
637 |
+
start_ind = end_ind + 20 # 20 is the gap in esm
|
638 |
+
io = Bio.PDB.PDBIO()
|
639 |
+
io.set_structure(new_model)
|
640 |
+
io.save(tmp_input_path)
|
641 |
+
|
642 |
+
input_protein_source = "esm"
|
643 |
+
print("Using input ESM")
|
644 |
+
except requests.exceptions.RequestException as e:
|
645 |
+
print(f"An error occurred in ESM: {e}")
|
646 |
+
# return "No linked structure found"
|
647 |
+
else:
|
648 |
+
print("Sequence too long for ESM")
|
649 |
+
if not os.path.exists(tmp_input_path):
|
650 |
+
print("Using input GT")
|
651 |
+
shutil.copyfile(gt_output_path, tmp_input_path)
|
652 |
+
input_protein_source = "gt"
|
653 |
+
|
654 |
+
align_gt_and_input(gt_output_path, tmp_input_path, gt_output_path, protein_input_path)
|
655 |
+
protein_size = validate_matching_input_gt(gt_output_path, protein_input_path)
|
656 |
+
assert protein_size > -1, "Failed to validate matching input and gt"
|
657 |
+
os.remove(tmp_input_path)
|
658 |
+
|
659 |
+
rel_gt_lig_paths = []
|
660 |
+
rel_ref_lig_paths = []
|
661 |
+
input_smiles = []
|
662 |
+
for i, ligand_path in enumerate(sorted(plinder_gt_ligand_paths)):
|
663 |
+
gt_ligand_output_path = os.path.join(output_models_folder, f"{row['system_id']}_ligand_gt_{i}.sdf")
|
664 |
+
# rel_gt_lig_paths.append(f"plinder_models/{row['system_id']}_ref_ligand_{i}.sdf")
|
665 |
+
rel_gt_lig_paths.append(f"plinder_models/{row['system_id']}_ligand_gt_{i}.sdf")
|
666 |
+
shutil.copyfile(ligand_path, gt_ligand_output_path)
|
667 |
+
|
668 |
+
loaded_ligand = Chem.MolFromMolFile(gt_ligand_output_path)
|
669 |
+
input_smiles.append(Chem.MolToSmiles(loaded_ligand))
|
670 |
+
|
671 |
+
ref_ligand_output_path = os.path.join(output_models_folder, f"{row['system_id']}_ligand_ref_{i}.sdf")
|
672 |
+
rel_ref_lig_paths.append(f"plinder_models/{row['system_id']}_ligand_ref_{i}.sdf")
|
673 |
+
create_conformers(input_smiles[-1], ref_ligand_output_path, num_conformers=1)
|
674 |
+
# check if file is empty
|
675 |
+
if os.path.getsize(ref_ligand_output_path) == 0:
|
676 |
+
print("Empty ref ligand, copying from gt", ref_ligand_output_path)
|
677 |
+
shutil.copyfile(gt_ligand_output_path, ref_ligand_output_path)
|
678 |
+
|
679 |
+
affinity = row["ligand_binding_affinity"]
|
680 |
+
if not pd.notna(affinity):
|
681 |
+
affinity = None
|
682 |
+
|
683 |
+
json_data = {
|
684 |
+
"input_structure": protein_input_relative_path,
|
685 |
+
"gt_structure": gt_output_relative_path,
|
686 |
+
"gt_sdf_list": rel_gt_lig_paths,
|
687 |
+
"input_smiles_list": input_smiles,
|
688 |
+
"resolution": row.fillna(99)["entry_resolution"],
|
689 |
+
"release_year": row["entry_release_date"],
|
690 |
+
"affinity": affinity,
|
691 |
+
"protein_seq_len": protein_size,
|
692 |
+
"uniprot": row["system_pocket_UniProt"],
|
693 |
+
"ligand_num_atoms": ligand_pos.shape[0],
|
694 |
+
"cluster": row["cluster"],
|
695 |
+
"cluster_size": row["cluster_size"],
|
696 |
+
"input_protein_source": input_protein_source,
|
697 |
+
"ref_sdf_list": rel_ref_lig_paths,
|
698 |
+
"pdb_id": row["system_id"],
|
699 |
+
}
|
700 |
+
open(output_json_path, "w").write(json.dumps(json_data, indent=4))
|
701 |
+
|
702 |
+
return "success"
|
703 |
+
|
704 |
+
# use linked structures
|
705 |
+
# input_structure_to_use = None
|
706 |
+
# apo_linked_structure = os.path.join(linked_structures_folder, "apo", system_id)
|
707 |
+
# pred_linked_structure = os.path.join(linked_structures_folder, "pred", system_id)
|
708 |
+
# if os.path.exists(apo_linked_structure):
|
709 |
+
# for folder in os.listdir(apo_linked_structure):
|
710 |
+
# if not os.path.isdir(os.path.join(pred_linked_structure, folder)):
|
711 |
+
# continue
|
712 |
+
# for filename in os.listdir(os.path.join(apo_linked_structure, folder)):
|
713 |
+
# if filename.endswith(".cif"):
|
714 |
+
# input_structure_to_use = os.path.join(apo_linked_structure, folder, filename)
|
715 |
+
# break
|
716 |
+
# if input_structure_to_use:
|
717 |
+
# break
|
718 |
+
# print(system_id, "found apo", input_structure_to_use)
|
719 |
+
# elif os.path.exists(pred_linked_structure):
|
720 |
+
# for folder in os.listdir(pred_linked_structure):
|
721 |
+
# if not os.path.isdir(os.path.join(pred_linked_structure, folder)):
|
722 |
+
# continue
|
723 |
+
# for filename in os.listdir(os.path.join(pred_linked_structure, folder)):
|
724 |
+
# if filename.endswith(".cif"):
|
725 |
+
# input_structure_to_use = os.path.join(pred_linked_structure, folder, filename)
|
726 |
+
# break
|
727 |
+
# if input_structure_to_use:
|
728 |
+
# break
|
729 |
+
# print(system_id, "found pred", input_structure_to_use)
|
730 |
+
# else:
|
731 |
+
# print(system_id, "no linked structure found")
|
732 |
+
# return "No linked structure found"
|
733 |
+
|
734 |
+
|
735 |
+
def main(prefix_bucket_id: str = "*"):
|
736 |
+
os.makedirs(OUTPUT_FOLDER, exist_ok=True)
|
737 |
+
systems = get_cached_systems_to_train()
|
738 |
+
print("total systems", len(systems))
|
739 |
+
|
740 |
+
print("clusters", systems["cluster"].value_counts())
|
741 |
+
|
742 |
+
# systems = systems[systems["system_num_protein_chains"] > 1]
|
743 |
+
# return
|
744 |
+
|
745 |
+
print("splits", systems["split"].value_counts())
|
746 |
+
val_or_test = systems[(systems["split"] == "val") | (systems["split"] == "test")]
|
747 |
+
print("validation or test", len(val_or_test))
|
748 |
+
|
749 |
+
output_models_folder = os.path.join(OUTPUT_FOLDER, "plinder_models")
|
750 |
+
output_train_jsons_folder = os.path.join(OUTPUT_FOLDER, "plinder_jsons_train")
|
751 |
+
output_val_jsons_folder = os.path.join(OUTPUT_FOLDER, "plinder_jsons_val")
|
752 |
+
output_test_jsons_folder = os.path.join(OUTPUT_FOLDER, "plinder_jsons_test")
|
753 |
+
output_info = os.path.join(OUTPUT_FOLDER, "plinder_generation_info.csv")
|
754 |
+
if prefix_bucket_id != "*":
|
755 |
+
output_info = os.path.join(OUTPUT_FOLDER, f"plinder_generation_info_{prefix_bucket_id}.csv")
|
756 |
+
|
757 |
+
os.makedirs(output_models_folder, exist_ok=True)
|
758 |
+
os.makedirs(output_train_jsons_folder, exist_ok=True)
|
759 |
+
os.makedirs(output_val_jsons_folder, exist_ok=True)
|
760 |
+
os.makedirs(output_test_jsons_folder, exist_ok=True)
|
761 |
+
|
762 |
+
split_to_folder = {
|
763 |
+
"train": output_train_jsons_folder,
|
764 |
+
"val": output_val_jsons_folder,
|
765 |
+
"test": output_test_jsons_folder
|
766 |
+
}
|
767 |
+
|
768 |
+
output_info_file = open(output_info, "a+")
|
769 |
+
|
770 |
+
for bucket_id, bucket_systems in systems.groupby('_bucket_id', sort=True):
|
771 |
+
if prefix_bucket_id != "*" and not str(bucket_id).startswith(prefix_bucket_id):
|
772 |
+
continue
|
773 |
+
# if bucket_id != "z2":
|
774 |
+
# continue
|
775 |
+
# systems_folder = "{BASE_FOLDER}/processed/tmp_z2/systems"
|
776 |
+
|
777 |
+
print("Starting bucket", bucket_id, len(bucket_systems))
|
778 |
+
print(len(bucket_systems), bucket_systems["system_num_ligand_chains"].value_counts())
|
779 |
+
|
780 |
+
tmp_output_models_folder = os.path.join(OUTPUT_FOLDER, f"tmp_{bucket_id}")
|
781 |
+
os.makedirs(tmp_output_models_folder, exist_ok=True)
|
782 |
+
os.system(f'{GSUTIL_PATH} -m cp -r "gs://plinder/2024-06/v2/systems/{bucket_id}.zip" {tmp_output_models_folder}')
|
783 |
+
systems_folder = os.path.join(tmp_output_models_folder, "systems")
|
784 |
+
os.system(f'unzip -o {os.path.join(tmp_output_models_folder, f"{bucket_id}.zip")} -d {systems_folder}')
|
785 |
+
|
786 |
+
for i, row in bucket_systems.iterrows():
|
787 |
+
# if not str(row['system_id']).startswith("4z22__1__1.A__1.C"):
|
788 |
+
# continue
|
789 |
+
print("doing", row['system_id'], row["system_num_protein_chains"], row["system_num_ligand_chains"])
|
790 |
+
system_folder = os.path.join(systems_folder, row['system_id'])
|
791 |
+
try:
|
792 |
+
success = prepare_system(row, system_folder, output_models_folder, split_to_folder[row["split"]])
|
793 |
+
print("done", row['system_id'], success)
|
794 |
+
output_info_file.write(f"{bucket_id},{row['system_id']},{success}\n")
|
795 |
+
except Exception as e:
|
796 |
+
print("Failed", row['system_id'], e)
|
797 |
+
output_info_file.write(f"{bucket_id},{row['system_id']},Failed\n")
|
798 |
+
output_info_file.flush()
|
799 |
+
|
800 |
+
shutil.rmtree(tmp_output_models_folder)
|
801 |
+
|
802 |
+
|
803 |
+
if __name__ == '__main__':
|
804 |
+
prefix_bucket_id = "*"
|
805 |
+
if len(sys.argv) > 1:
|
806 |
+
prefix_bucket_id = sys.argv[1]
|
807 |
+
main(prefix_bucket_id)
|
resources/{only_weights_87-172000.ckpt → only_weights_107-187000.ckpt}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c396fa56019277eb4a112dd2bb08f6cccc9f1a7393e4861f606b42035ca4cca9
|
3 |
+
size 53302016
|