# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import math from typing import Optional, Callable, List, Tuple import numpy as np import torch import torch.nn as nn import torch.utils.checkpoint from scipy.stats import truncnorm from dockformer.utils.kernel.attention_core import attention_core from dockformer.utils.precision_utils import is_fp16_enabled from dockformer.utils.tensor_utils import ( permute_final_dims, flatten_final_dims, ) # Suited for 40gb GPU # DEFAULT_LMA_Q_CHUNK_SIZE = 1024 # DEFAULT_LMA_KV_CHUNK_SIZE = 4096 # Suited for 10gb GPU DEFAULT_LMA_Q_CHUNK_SIZE = 64 DEFAULT_LMA_KV_CHUNK_SIZE = 256 def _prod(nums): out = 1 for n in nums: out = out * n return out def _calculate_fan(linear_weight_shape, fan="fan_in"): fan_out, fan_in = linear_weight_shape if fan == "fan_in": f = fan_in elif fan == "fan_out": f = fan_out elif fan == "fan_avg": f = (fan_in + fan_out) / 2 else: raise ValueError("Invalid fan option") return f def trunc_normal_init_(weights, scale=1.0, fan="fan_in"): shape = weights.shape f = _calculate_fan(shape, fan) scale = scale / max(1, f) a = -2 b = 2 std = math.sqrt(scale) / truncnorm.std(a=a, b=b, loc=0, scale=1) size = _prod(shape) samples = truncnorm.rvs(a=a, b=b, loc=0, scale=std, size=size) samples = np.reshape(samples, shape) with torch.no_grad(): weights.copy_(torch.tensor(samples, device=weights.device)) def lecun_normal_init_(weights): trunc_normal_init_(weights, scale=1.0) def he_normal_init_(weights): trunc_normal_init_(weights, scale=2.0) def glorot_uniform_init_(weights): nn.init.xavier_uniform_(weights, gain=1) def final_init_(weights): with torch.no_grad(): weights.fill_(0.0) def gating_init_(weights): with torch.no_grad(): weights.fill_(0.0) def normal_init_(weights): torch.nn.init.kaiming_normal_(weights, nonlinearity="linear") def ipa_point_weights_init_(weights): with torch.no_grad(): softplus_inverse_1 = 0.541324854612918 weights.fill_(softplus_inverse_1) class Linear(nn.Linear): """ A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear. Implements the initializers in 1.11.4, plus some additional ones found in the code. """ def __init__( self, in_dim: int, out_dim: int, bias: bool = True, init: str = "default", init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None, precision=None ): """ Args: in_dim: The final dimension of inputs to the layer out_dim: The final dimension of layer outputs bias: Whether to learn an additive bias. True by default init: The initializer to use. Choose from: "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal": Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0 Overridden by init_fn if the latter is not None. init_fn: A custom initializer taking weight and bias as inputs. Overrides init if not None. """ super(Linear, self).__init__(in_dim, out_dim, bias=bias) if bias: with torch.no_grad(): self.bias.fill_(0) with torch.no_grad(): if init_fn is not None: init_fn(self.weight, self.bias) else: if init == "default": lecun_normal_init_(self.weight) elif init == "relu": he_normal_init_(self.weight) elif init == "glorot": glorot_uniform_init_(self.weight) elif init == "gating": gating_init_(self.weight) if bias: self.bias.fill_(1.0) elif init == "normal": normal_init_(self.weight) elif init == "final": final_init_(self.weight) else: raise ValueError("Invalid init string.") self.precision = precision def forward(self, input: torch.Tensor) -> torch.Tensor: d = input.dtype if self.precision is not None: with torch.cuda.amp.autocast(enabled=False): bias = self.bias.to(dtype=self.precision) if self.bias is not None else None return nn.functional.linear(input.to(dtype=self.precision), self.weight.to(dtype=self.precision), bias).to(dtype=d) if d is torch.bfloat16: with torch.cuda.amp.autocast(enabled=False): bias = self.bias.to(dtype=d) if self.bias is not None else None return nn.functional.linear(input, self.weight.to(dtype=d), bias) return nn.functional.linear(input, self.weight, self.bias) class LayerNorm(nn.Module): def __init__(self, c_in, eps=1e-5): super(LayerNorm, self).__init__() self.c_in = (c_in,) self.eps = eps self.weight = nn.Parameter(torch.ones(c_in)) self.bias = nn.Parameter(torch.zeros(c_in)) def forward(self, x): d = x.dtype if d is torch.bfloat16: with torch.cuda.amp.autocast(enabled=False): out = nn.functional.layer_norm( x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps ) else: out = nn.functional.layer_norm( x, self.c_in, self.weight, self.bias, self.eps, ) return out @torch.jit.ignore def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor: """ Softmax, but without automatic casting to fp32 when the input is of type bfloat16 """ d = t.dtype if d is torch.bfloat16: with torch.cuda.amp.autocast(enabled=False): s = torch.nn.functional.softmax(t, dim=dim) else: s = torch.nn.functional.softmax(t, dim=dim) return s #@torch.jit.script def _attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, biases: List[torch.Tensor]) -> torch.Tensor: # [*, H, C_hidden, K] key = permute_final_dims(key, (1, 0)) # [*, H, Q, K] a = torch.matmul(query, key) for b in biases: a += b a = softmax_no_cast(a, -1) # [*, H, Q, C_hidden] a = torch.matmul(a, value) return a class Attention(nn.Module): """ Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors. """ def __init__( self, c_q: int, c_k: int, c_v: int, c_hidden: int, no_heads: int, gating: bool = True, ): """ Args: c_q: Input dimension of query data c_k: Input dimension of key data c_v: Input dimension of value data c_hidden: Per-head hidden dimension no_heads: Number of attention heads gating: Whether the output should be gated using query data """ super(Attention, self).__init__() self.c_q = c_q self.c_k = c_k self.c_v = c_v self.c_hidden = c_hidden self.no_heads = no_heads self.gating = gating # DISCREPANCY: c_hidden is not the per-head channel dimension, as # stated in the supplement, but the overall channel dimension. self.linear_q = Linear( self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot" ) self.linear_k = Linear( self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot" ) self.linear_v = Linear( self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot" ) self.linear_o = Linear( self.c_hidden * self.no_heads, self.c_q, init="final" ) self.linear_g = None if self.gating: self.linear_g = Linear( self.c_q, self.c_hidden * self.no_heads, init="gating" ) self.sigmoid = nn.Sigmoid() def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor, apply_scale: bool = True ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor ]: # [*, Q/K/V, H * C_hidden] q = self.linear_q(q_x) k = self.linear_k(kv_x) v = self.linear_v(kv_x) # [*, Q/K, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) k = k.view(k.shape[:-1] + (self.no_heads, -1)) v = v.view(v.shape[:-1] + (self.no_heads, -1)) # [*, H, Q/K, C_hidden] q = q.transpose(-2, -3) k = k.transpose(-2, -3) v = v.transpose(-2, -3) if apply_scale: q /= math.sqrt(self.c_hidden) return q, k, v def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor ) -> torch.Tensor: if self.linear_g is not None: g = self.sigmoid(self.linear_g(q_x)) # [*, Q, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) o = o * g # [*, Q, H * C_hidden] o = flatten_final_dims(o, 2) # [*, Q, C_q] o = self.linear_o(o) return o def forward( self, q_x: torch.Tensor, kv_x: torch.Tensor, biases: Optional[List[torch.Tensor]] = None, use_memory_efficient_kernel: bool = False, use_lma: bool = False, lma_q_chunk_size: int = DEFAULT_LMA_Q_CHUNK_SIZE, lma_kv_chunk_size: int = DEFAULT_LMA_KV_CHUNK_SIZE, ) -> torch.Tensor: """ Args: q_x: [*, Q, C_q] query data kv_x: [*, K, C_k] key data biases: List of biases that broadcast to [*, H, Q, K] use_memory_efficient_kernel: Whether to use a custom memory-efficient attention kernel. This should be the default choice for most. If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead use_lma: Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead lma_q_chunk_size: Query chunk size (for LMA) lma_kv_chunk_size: Key/Value chunk size (for LMA) Returns [*, Q, C_q] attention update """ if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None): raise ValueError( "If use_lma is specified, lma_q_chunk_size and " "lma_kv_chunk_size must be provided" ) attn_options = [use_memory_efficient_kernel, use_lma] if sum(attn_options) > 1: raise ValueError( "Choose at most one alternative attention algorithm" ) if biases is None: biases = [] q, k, v = self._prep_qkv(q_x, kv_x, apply_scale=True) if is_fp16_enabled(): use_memory_efficient_kernel = False if use_memory_efficient_kernel: if len(biases) > 2: raise ValueError( "If use_memory_efficient_kernel is True, you may only " "provide up to two bias terms" ) o = attention_core(q, k, v, *((biases + [None] * 2)[:2])) o = o.transpose(-2, -3) elif use_lma: biases = [ b.expand(b.shape[:-2] + (q_x.shape[-2],) + (kv_x.shape[-2],)) for b in biases ] o = _lma(q, k, v, biases, lma_q_chunk_size, lma_kv_chunk_size) o = o.transpose(-2, -3) else: o = _attention(q, k, v, biases) o = o.transpose(-2, -3) o = self._wrap_up(o, q_x) return o class GlobalAttention(nn.Module): def __init__(self, c_in, c_hidden, no_heads, inf, eps): super(GlobalAttention, self).__init__() self.c_in = c_in self.c_hidden = c_hidden self.no_heads = no_heads self.inf = inf self.eps = eps self.linear_q = Linear( c_in, c_hidden * no_heads, bias=False, init="glorot" ) self.linear_k = Linear( c_in, c_hidden, bias=False, init="glorot", ) self.linear_v = Linear( c_in, c_hidden, bias=False, init="glorot", ) self.linear_g = Linear(c_in, c_hidden * no_heads, init="gating") self.linear_o = Linear(c_hidden * no_heads, c_in, init="final") self.sigmoid = nn.Sigmoid() def forward(self, m: torch.Tensor, mask: torch.Tensor, use_lma: bool = False, ) -> torch.Tensor: # [*, N_res, C_in] q = torch.sum(m * mask.unsqueeze(-1), dim=-2) / ( torch.sum(mask, dim=-1)[..., None] + self.eps ) # [*, N_res, H * C_hidden] q = self.linear_q(q) q *= (self.c_hidden ** (-0.5)) # [*, N_res, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) # [*, N_res, C_hidden] k = self.linear_k(m) v = self.linear_v(m) bias = (self.inf * (mask - 1))[..., :, None, :] if not use_lma: # [*, N_res, H, N_seq] a = torch.matmul( q, k.transpose(-1, -2), # [*, N_res, C_hidden, N_seq] ) a += bias a = softmax_no_cast(a) # [*, N_res, H, C_hidden] o = torch.matmul( a, v, ) else: o = _lma( q, k, v, [bias], DEFAULT_LMA_Q_CHUNK_SIZE, DEFAULT_LMA_KV_CHUNK_SIZE ) # [*, N_res, C_hidden] g = self.sigmoid(self.linear_g(m)) # [*, N_res, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) # [*, N_res, H, C_hidden] o = o.unsqueeze(-3) * g # [*, N_res, H * C_hidden] o = o.reshape(o.shape[:-2] + (-1,)) # [*, N_res, C_in] m = self.linear_o(o) return m def _lma( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, biases: List[torch.Tensor], q_chunk_size: int, kv_chunk_size: int, ): no_q, no_kv = q.shape[-2], k.shape[-2] # [*, H, Q, C_hidden] o = q.new_zeros(q.shape) for q_s in range(0, no_q, q_chunk_size): q_chunk = q[..., q_s: q_s + q_chunk_size, :] large_bias_chunks = [ b[..., q_s: q_s + q_chunk_size, :] for b in biases ] maxes = [] weights = [] values = [] for kv_s in range(0, no_kv, kv_chunk_size): k_chunk = k[..., kv_s: kv_s + kv_chunk_size, :] v_chunk = v[..., kv_s: kv_s + kv_chunk_size, :] small_bias_chunks = [ b[..., kv_s: kv_s + kv_chunk_size] for b in large_bias_chunks ] a = torch.einsum( "...hqd,...hkd->...hqk", q_chunk, k_chunk, ) for b in small_bias_chunks: a += b max_a = torch.max(a, dim=-1, keepdim=True)[0] exp_a = torch.exp(a - max_a) exp_v = torch.einsum("...hvf,...hqv->...hqf", v_chunk, exp_a) maxes.append(max_a.detach().squeeze(-1)) weights.append(torch.sum(exp_a, dim=-1)) values.append(exp_v) chunk_max = torch.stack(maxes, dim=-3) chunk_weights = torch.stack(weights, dim=-3) chunk_values = torch.stack(values, dim=-4) global_max = torch.max(chunk_max, dim=-3, keepdim=True)[0] max_diffs = torch.exp(chunk_max - global_max) chunk_values = chunk_values * max_diffs.unsqueeze(-1) chunk_weights = chunk_weights * max_diffs all_values = torch.sum(chunk_values, dim=-4) all_weights = torch.sum(chunk_weights.unsqueeze(-1), dim=-4) q_chunk_out = all_values / all_weights o[..., q_s: q_s + q_chunk_size, :] = q_chunk_out return o