# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import sys import torch import torch.nn as nn from typing import Tuple, Sequence, Optional from functools import partial from abc import ABC, abstractmethod from dockformer.model.primitives import Linear, LayerNorm from dockformer.model.dropout import DropoutRowwise from dockformer.model.single_attention import SingleRowAttentionWithPairBias from dockformer.model.pair_transition import PairTransition from dockformer.model.triangular_attention import ( TriangleAttention, ) from dockformer.model.triangular_multiplicative_update import ( TriangleMultiplicationOutgoing, TriangleMultiplicationIncoming, ) from dockformer.utils.checkpointing import checkpoint_blocks from dockformer.utils.tensor_utils import add class SingleRepTransition(nn.Module): """ Feed-forward network applied to single representation activations after attention. Implements Algorithm 9 """ def __init__(self, c_m, n): """ Args: c_m: channel dimension n: Factor multiplied to c_m to obtain the hidden channel dimension """ super(SingleRepTransition, self).__init__() self.c_m = c_m self.n = n self.layer_norm = LayerNorm(self.c_m) self.linear_1 = Linear(self.c_m, self.n * self.c_m, init="relu") self.relu = nn.ReLU() self.linear_2 = Linear(self.n * self.c_m, self.c_m, init="final") def _transition(self, m, mask): m = self.layer_norm(m) m = self.linear_1(m) m = self.relu(m) m = self.linear_2(m) * mask return m def forward( self, m: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Args: m: [*, N_res, C_m] activation after attention mask: [*, N_res, C_m] mask Returns: m: [*, N_res, C_m] activation update """ # DISCREPANCY: DeepMind forgets to apply the mask here. if mask is None: mask = m.new_ones(m.shape[:-1]) mask = mask.unsqueeze(-1) m = self._transition(m, mask) return m class PairStack(nn.Module): def __init__( self, c_z: int, c_hidden_mul: int, c_hidden_pair_att: int, no_heads_pair: int, transition_n: int, pair_dropout: float, inf: float, eps: float ): super(PairStack, self).__init__() self.tri_mul_out = TriangleMultiplicationOutgoing( c_z, c_hidden_mul, ) self.tri_mul_in = TriangleMultiplicationIncoming( c_z, c_hidden_mul, ) self.tri_att_start = TriangleAttention( c_z, c_hidden_pair_att, no_heads_pair, inf=inf, ) self.tri_att_end = TriangleAttention( c_z, c_hidden_pair_att, no_heads_pair, inf=inf, ) self.pair_transition = PairTransition( c_z, transition_n, ) self.ps_dropout_row_layer = DropoutRowwise(pair_dropout) def forward(self, z: torch.Tensor, pair_mask: torch.Tensor, use_lma: bool = False, inplace_safe: bool = False, _mask_trans: bool = True, ) -> torch.Tensor: # DeepMind doesn't mask these transitions in the source, so _mask_trans # should be disabled to better approximate the exact activations of # the original. pair_trans_mask = pair_mask if _mask_trans else None tmu_update = self.tri_mul_out( z, mask=pair_mask, inplace_safe=inplace_safe, _add_with_inplace=True, ) if (not inplace_safe): z = z + self.ps_dropout_row_layer(tmu_update) else: z = tmu_update del tmu_update tmu_update = self.tri_mul_in( z, mask=pair_mask, inplace_safe=inplace_safe, _add_with_inplace=True, ) if (not inplace_safe): z = z + self.ps_dropout_row_layer(tmu_update) else: z = tmu_update del tmu_update z = add(z, self.ps_dropout_row_layer( self.tri_att_start( z, mask=pair_mask, use_memory_efficient_kernel=False, use_lma=use_lma, ) ), inplace=inplace_safe, ) z = z.transpose(-2, -3) if (inplace_safe): z = z.contiguous() z = add(z, self.ps_dropout_row_layer( self.tri_att_end( z, mask=pair_mask.transpose(-1, -2), use_memory_efficient_kernel=False, use_lma=use_lma, ) ), inplace=inplace_safe, ) z = z.transpose(-2, -3) if (inplace_safe): z = z.contiguous() z = add(z, self.pair_transition( z, mask=pair_trans_mask, ), inplace=inplace_safe, ) return z class EvoformerBlock(nn.Module, ABC): def __init__(self, c_m: int, c_z: int, c_hidden_single_att: int, c_hidden_mul: int, c_hidden_pair_att: int, no_heads_single: int, no_heads_pair: int, transition_n: int, single_dropout: float, pair_dropout: float, inf: float, eps: float, ): super(EvoformerBlock, self).__init__() self.single_att_row = SingleRowAttentionWithPairBias( c_m=c_m, c_z=c_z, c_hidden=c_hidden_single_att, no_heads=no_heads_single, inf=inf, ) self.single_dropout_layer = DropoutRowwise(single_dropout) self.single_transition = SingleRepTransition( c_m=c_m, n=transition_n, ) self.pair_stack = PairStack( c_z=c_z, c_hidden_mul=c_hidden_mul, c_hidden_pair_att=c_hidden_pair_att, no_heads_pair=no_heads_pair, transition_n=transition_n, pair_dropout=pair_dropout, inf=inf, eps=eps ) def forward(self, m: Optional[torch.Tensor], z: Optional[torch.Tensor], single_mask: torch.Tensor, pair_mask: torch.Tensor, use_lma: bool = False, inplace_safe: bool = False, _mask_trans: bool = True, ) -> Tuple[torch.Tensor, torch.Tensor]: single_trans_mask = single_mask if _mask_trans else None input_tensors = [m, z] m, z = input_tensors z = self.pair_stack( z=z, pair_mask=pair_mask, use_lma=use_lma, inplace_safe=inplace_safe, _mask_trans=_mask_trans, ) m = add(m, self.single_dropout_layer( self.single_att_row( m, z=z, mask=single_mask, use_memory_efficient_kernel=False, use_lma=use_lma, ) ), inplace=inplace_safe, ) m = add(m, self.single_transition(m, mask=single_mask), inplace=inplace_safe) return m, z class EvoformerStack(nn.Module): """ Main Evoformer trunk. Implements Algorithm 6. """ def __init__( self, c_m: int, c_z: int, c_hidden_single_att: int, c_hidden_mul: int, c_hidden_pair_att: int, c_s: int, no_heads_single: int, no_heads_pair: int, no_blocks: int, transition_n: int, single_dropout: float, pair_dropout: float, blocks_per_ckpt: int, inf: float, eps: float, clear_cache_between_blocks: bool = False, **kwargs, ): """ Args: c_m: single channel dimension c_z: Pair channel dimension c_hidden_single_att: Hidden dimension in single representation attention c_hidden_mul: Hidden dimension in multiplicative updates c_hidden_pair_att: Hidden dimension in triangular attention c_s: Channel dimension of the output "single" embedding no_heads_single: Number of heads used for single attention no_heads_pair: Number of heads used for pair attention no_blocks: Number of Evoformer blocks in the stack transition_n: Factor by which to multiply c_m to obtain the SingleTransition hidden dimension single_dropout: Dropout rate for single activations pair_dropout: Dropout used for pair activations blocks_per_ckpt: Number of Evoformer blocks in each activation checkpoint clear_cache_between_blocks: Whether to clear CUDA's GPU memory cache between blocks of the stack. Slows down each block but can reduce fragmentation """ super(EvoformerStack, self).__init__() self.blocks_per_ckpt = blocks_per_ckpt self.clear_cache_between_blocks = clear_cache_between_blocks self.blocks = nn.ModuleList() for _ in range(no_blocks): block = EvoformerBlock( c_m=c_m, c_z=c_z, c_hidden_single_att=c_hidden_single_att, c_hidden_mul=c_hidden_mul, c_hidden_pair_att=c_hidden_pair_att, no_heads_single=no_heads_single, no_heads_pair=no_heads_pair, transition_n=transition_n, single_dropout=single_dropout, pair_dropout=pair_dropout, inf=inf, eps=eps, ) self.blocks.append(block) self.linear = Linear(c_m, c_s) def _prep_blocks(self, use_lma: bool, single_mask: Optional[torch.Tensor], pair_mask: Optional[torch.Tensor], inplace_safe: bool, _mask_trans: bool, ): blocks = [ partial( b, single_mask=single_mask, pair_mask=pair_mask, use_lma=use_lma, inplace_safe=inplace_safe, _mask_trans=_mask_trans, ) for b in self.blocks ] if self.clear_cache_between_blocks: def block_with_cache_clear(block, *args, **kwargs): torch.cuda.empty_cache() return block(*args, **kwargs) blocks = [partial(block_with_cache_clear, b) for b in blocks] return blocks def forward(self, m: torch.Tensor, z: torch.Tensor, single_mask: torch.Tensor, pair_mask: torch.Tensor, use_lma: bool = False, inplace_safe: bool = False, _mask_trans: bool = True, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: m: [*, N_res, C_m] single embedding z: [*, N_res, N_res, C_z] pair embedding single_mask: [*, N_res] single mask pair_mask: [*, N_res, N_res] pair mask use_lma: Whether to use low-memory attention during inference. Returns: m: [*, N_res, C_m] single embedding z: [*, N_res, N_res, C_z] pair embedding s: [*, N_res, C_s] single embedding after linear layer """ blocks = self._prep_blocks( use_lma=use_lma, single_mask=single_mask, pair_mask=pair_mask, inplace_safe=inplace_safe, _mask_trans=_mask_trans, ) blocks_per_ckpt = self.blocks_per_ckpt if(not torch.is_grad_enabled()): blocks_per_ckpt = None m, z = checkpoint_blocks( blocks, args=(m, z), blocks_per_ckpt=blocks_per_ckpt, ) s = self.linear(m) return m, z, s