Spaces:
Running
Running
File size: 8,224 Bytes
4060d6d bfbddc7 4060d6d bfbddc7 4060d6d f582647 4060d6d f582647 4060d6d 4c9a580 5535c21 4c9a580 4060d6d bfbddc7 4060d6d 1bbfb6f 4060d6d c4f6e95 4060d6d 1bbfb6f 4060d6d 1bbfb6f e00357c 4060d6d 5546144 7467112 5546144 4060d6d bfbddc7 4060d6d f77fa43 f582647 bfbddc7 4060d6d bfbddc7 4060d6d c4f6e95 4060d6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
from gradio_leaderboard import Leaderboard
from pathlib import Path
import pandas as pd
import os
import json
import requests
from envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
def fill_form(model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license):
value = {
# Model name
"entry.1591601824": model_name,
# username/space
"entry.1171388028": model_id,
# Submission ID on CMT
"entry.171528970": submission_id,
# Preprint or paper link
"entry.1284338508": paper_link,
# Model architecture
"entry.1291571256": architecture,
# License
# Option: any text
"entry.272554778": license,
# Challenge
# Option: any text
"entry.1908975677": challenge,
# Email
# Option: any text
"entry.964644151": contact_email
}
return value
def sendForm(url, data):
try:
requests.post(url, data = data)
print("Submitted successfully!")
except:
print("Error!")
def submit(model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license):
if model_name == "" or model_id == "" or challenge == "" or architecture == "" or license == "":
gr.Error("Please fill all the fields")
return
if submission_id == "" and paper_link =="":
gr.Error("Provide either a link to a paper describing the method or a submission ID for the MLSB workshop.")
return
try:
user_name = ""
if "/" in model_id:
user_name = model_id.split("/")[0]
model_path = model_id.split("/")[1]
eval_entry = {
"model_name": model_name,
"model_id": model_id,
"challenge": challenge,
"submission_id": submission_id,
"architecture": architecture,
"license": license
}
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{user_name}_{model_path}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Sending form")
formData = fill_form(model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license)
sendForm("https://docs.google.com/forms/d/e/1FAIpQLSf1zP7RAFC5RLlva03xm0eIAPLKXOmMvNUzirbm82kdCUFKNw/formResponse", formData)
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
gr.Info("Successfully submitted", duration=10)
# Remove the local file
os.remove(out_path)
except:
gr.Error("Error submitting the model")
abs_path = Path(__file__).parent
# Any pandas-compatible data
pinder_df = pd.read_json(str(abs_path / "leaderboard_pinder.json"))
plinder_df = pd.read_json(str(abs_path / "leaderboard_plinder.json"))
with gr.Blocks() as demo:
gr.Markdown("""
# MLSB 2024 Leaderboard
""")
with gr.Tab("🎖️ PINDER Leaderboard"):
gr.Markdown("""## PINDER Leaderboard
Evaluating Protein-Protein interaction prediction
""")
Leaderboard(
value=pinder_df,
select_columns=["Arch", "Model", "L_rms", "I_rms",
"F_nat", "DOCKQ", "CAPRI"],
search_columns=["model_name_for_query"],
hide_columns=["model_name_for_query",],
filter_columns=["Arch"],
)
with gr.Tab("🥇 PLINDER Leaderboard"):
gr.Markdown("""## PLINDER Leaderboard
Evaluating Protein-Ligand prediction
""")
Leaderboard(
value=plinder_df,
select_columns=["Arch", "Model", "Mean lDDT-PLI", "Mean lDDT-LP",
"Median RMSD", "% lDDT-PLI >= 0.5", "% pass PoseBusters"],
search_columns=["model_name_for_query"],
hide_columns=["model_name_for_query",],
filter_columns=["Arch"],
)
with gr.Tab("✉️ Submit"):
gr.Markdown("""## Submit your model
Submit your model to the leaderboard using the below form AFTER following the following steps:
- Create a HuggingFace account and request to join the [MLSB organization](https://huggingface.co/MLSB)
- Create a new space in the MLSB organization and add your model using the inference templates: https://huggingface.co/new-space?owner=MLSB
- Fill the submission form.
## Prerequisites:
To qualify for submission, each team must:
- Provide an MLSB submission ID (find it on CMT) or a link to a preprint/paper describing their methodology. This publication does not have to specifically report training or evaluation on the P(L)INDER dataset. Previously published methods, such as DiffDock, only need to link their existing paper. Note that entry into this competition does not equate to an MLSB workshop paper submission.
- Create a copy of the provided [inference templates](https://huggingface.co/MLSB/).
- Go to the top right corner of the page of the respective inference template and click on the drop-down menu (vertical ellipsis) right next to the “Community”, then select “Duplicate this space”.
- Change files in the newly create space to reflect the peculiarities of your model
- Edit `requirements.txt` to capture all python dependencies.
- Modify the Dockerfile as appropriate (including selecting the right base image)
- Include a `inference_app.py` file. This contains a `predict` function that should be modified to reflect the specifics of inference using their model.
- Include a `train.py` file to ensure that training and model selection use only the PINDER/PLINDER datasets and to clearly show any additional hyperparameters used.
- Provide a LICENSE file that allows for reuse, derivative works, and distribution of the provided software and weights (e.g., MIT or Apache2 license).
- Submit to the leaderboard via the [form below](https://huggingface.co/spaces/MLSB/leaderboard2024).
- On submission page, add reference to the newly created space in the format username/space (e.g mlsb/alphafold3). You can create the space on your personal Huggingface account and transfer it to MLSB for the submission to get a GPU assigned.
After a brief technical review by our organizers we will grant you a free GPU until MLSB so that anyone can play with the model and we will run the evaluation.
If you have a questions please email: [email protected]
""")
model_name = gr.Textbox(label="Model name")
model_id = gr.Textbox(label="username/space e.g mlsb/alphafold3")
contact_email = gr.Textbox(label="Contact E-Mail")
challenge = gr.Radio(choices=["PINDER", "PLINDER"],label="Challenge")
gr.Markdown("Either give a submission id if you submitted to the MLSB workshop or provide a link to the preprint/paper describing the method.")
with gr.Row():
submission_id = gr.Textbox(label="Submission ID on CMT")
paper_link = gr.Textbox(label="Preprint or Paper link")
architecture = gr.Dropdown(choices=["GNN", "CNN","Diffusion Model", "Physics-based", "Other"],label="Model architecture")
license = gr.Dropdown(choices=["mit", "apache-2.0", "gplv2", "gplv3", "lgpl", "mozilla", "bsd", "other"],label="License")
submit_btn = gr.Button("Submit")
submit_btn.click(submit, inputs=[model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license], outputs=[])
gr.Markdown("""
Please find more information about the challenges on [mlsb.io/#challenge](https://mlsb.io/#challenge)""")
if __name__ == "__main__":
demo.launch() |