MUmairAB commited on
Commit
ff26108
1 Parent(s): 914a778

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -19,21 +19,21 @@ def fill_the_mask(text):
19
  #First sort the list of dictionaries according to the score
20
  model_out = sorted(model_out, key=lambda x: x['score'],reverse=True)
21
 
22
- #Create a list to store the model output
23
- out_list = []
24
 
25
  #Iterate over the list of dictionaries and get the required ouput
26
  for sub_dict in model_out:
27
- out_list.append(sub_dict["sequence"])
28
 
29
- return out_list
30
 
31
  #Create a Gradio user interface
32
  my_interface = gr.Interface(title="Masked Language Model APP\n(by Umair Akram)",
33
  description="This App uses a fine-tuned DistilBERT-Base-Uncased Masked Language Model to predict the missed word in a sentence.\nEnter your text and put \"[MASK]\" at the word which you want to predict, as shown in the following example: Can we [MASK] to Paris?",
34
  fn=fill_the_mask,
35
  inputs="text",
36
- outputs="text")
37
 
38
  #Define the main function
39
  if __name__ == "__main__":
 
19
  #First sort the list of dictionaries according to the score
20
  model_out = sorted(model_out, key=lambda x: x['score'],reverse=True)
21
 
22
+ #Create a dictionary to store the model output
23
+ out_dict = {}
24
 
25
  #Iterate over the list of dictionaries and get the required ouput
26
  for sub_dict in model_out:
27
+ out_dict[sub_dict["sequence"]] = round(sub_dict["score"], 3)
28
 
29
+ return out_dict
30
 
31
  #Create a Gradio user interface
32
  my_interface = gr.Interface(title="Masked Language Model APP\n(by Umair Akram)",
33
  description="This App uses a fine-tuned DistilBERT-Base-Uncased Masked Language Model to predict the missed word in a sentence.\nEnter your text and put \"[MASK]\" at the word which you want to predict, as shown in the following example: Can we [MASK] to Paris?",
34
  fn=fill_the_mask,
35
  inputs="text",
36
+ outputs="label")
37
 
38
  #Define the main function
39
  if __name__ == "__main__":