Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import pickle | |
# Load the LSTM model | |
lstm_model = load_model('lstm.h5') | |
# Load the Tokenizer used during training | |
with open('tokenizer.pkl', 'rb') as tokenizer_file: | |
tokenizer = pickle.load(tokenizer_file) | |
# Define class labels and their numerical mapping | |
class_mapping = {"Angry": 0, "Sad": 1, "Joy": 2, "Surprise": 3} | |
numerical_to_label = {v: k for k, v in class_mapping.items()} | |
st.set_page_config(layout = "wide") | |
st.title('VibeConnect ๐๐๐คช') | |
st.markdown( | |
""" | |
<style> | |
div.stElement { | |
text-align: center; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Define the emojis you want to use | |
emojis = ["๐คฃ","๐ฅฒ","๐ฅน","๐","๐","๐","๐คช","๐คฉ","๐ฅณ","๐ญ","๐ก","๐ฆ","๐ง","๐ฎ","๐ฅด","๐คฎ","๐คง","๐ท"] | |
# Create a string of emojis to use as the background | |
background_emojis = " ".join(emojis * 10) # Repeat the emojis to cover the background | |
# Use HTML and CSS to set the background | |
background_style = f""" | |
<style> | |
body {{ | |
background: linear-gradient(to right, #ffecd2, #fcb69f); | |
font-size: 30px; | |
background-size: 100% 100%; | |
background-attachment: fixed; | |
height: 100vh; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
}} | |
.content {{ | |
background: rgba(255, 255, 255, 0.8); | |
padding: 20px; | |
border-radius: 10px; | |
text-align: center; | |
opacity: 0.8 | |
}} | |
</style> | |
<div class="content"> | |
{background_emojis} | |
</div> | |
""" | |
# Set the HTML as the app's background | |
st.markdown(background_style, unsafe_allow_html=True) | |
# Text input for the user to enter a sequence | |
user_input = st.text_input('Enter a Text:') | |
if st.button('Predict'): | |
# Tokenize and pad the user input | |
sequence = tokenizer.texts_to_sequences([user_input]) | |
padded_sequence = pad_sequences(sequence, maxlen=128) | |
# Make predictions | |
prediction = lstm_model.predict(padded_sequence) | |
emojis = ["๐ก", "๐ญ", "๐", "๐ฏ"] | |
threshold = 0.5 | |
# Display the label | |
for i in range(len(prediction[0])): | |
label = numerical_to_label[i] | |
probability = prediction[0][i] | |
if probability > threshold: | |
st.write(f'{label}{emojis[i]}') | |