RashiAgarwal's picture
Update app.py
0cdf49f
#!pip install -q --upgrade transformers diffusers ftfy
#!pip install -q --upgrade transformers==4.25.1 diffusers ftfy
#!pip install accelerate -q
from base64 import b64encode
import numpy
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from huggingface_hub import notebook_login
# For video display:
from IPython.display import HTML
from matplotlib import pyplot as plt
from pathlib import Path
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import gradio as gr
torch.manual_seed(1)
#if not (Path.home()/'.huggingface'/'token').exists(): notebook_login()
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
# Set device
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
import os
MY_TOKEN=os.environ.get('HF_TOKEN_SD')
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae",use_auth_token=MY_TOKEN)
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
"""Functions"""
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
#Generating an image with these modified embeddings
def generate_with_embs(text_embeddings, text_input):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 3 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(64) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
scheduler.set_timesteps(num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def ref_loss(images,ref_image):
# Reference image
error = torch.abs(images - ref_image).mean()
return error
def inference(prompt, style_index):
styles = ['<midjourney-style>', '<hitokomoru-style>','<birb-style>','<summie-style>','<illustration-style>','<m-geo>','<buhu>']
embed = ['learned_embeds_m.bin','learned_embeds_h.bin', 'learned_embeds.bin', 'learned_embeds_s.bin','learned_embeds_i.bin','learned_embeds_mg.bin','learned_embeds_buhu.bin']
# Tokenize
text_input = tokenizer(prompt+" .", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
# Access the embedding layer
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
token_embeddings = token_emb_layer(text_input.input_ids.to(torch_device))
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
## Without any Textual Inversion
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
image1 = generate_with_embs(modified_output_embeddings,text_input)
replace_id=269 #replaced dot with Textual Inversion
## midjourney-style
style = styles[style_index]
emb = embed[style_index]
x_embed = torch.load(emb)
# The new embedding - our special birb word
replacement_token_embedding = x_embed[style].to(torch_device)
# Insert this into the token embeddings
token_embeddings[0, torch.where(input_ids[0]==replace_id)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
image2 = generate_with_embs(modified_output_embeddings,text_input)
prompt1 = 'rainbow'
# Tokenize
text_input1 = tokenizer(prompt1, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
# Access the embedding layer
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings1 = pos_emb_layer(position_ids)
input_ids1 = text_input1.input_ids.to(torch_device)
# Get token embeddings
token_embeddings1 = token_emb_layer(input_ids1)
# Combine with pos embs
input_embeddings1 = token_embeddings1 + position_embeddings1
# Feed through to get final output embs
modified_output_embeddings1 = get_output_embeds(input_embeddings1)
# And generate an image with this:
ref_image = generate_with_embs(modified_output_embeddings1, text_input1)
ref_latent = pil_to_latent(ref_image)
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 3 # # Number of denoising steps
guidance_scale = 8 # # Scale for classifier-free guidance
generator = torch.manual_seed(64) # Seed generator to create the inital latent noise
batch_size = 1
blue_loss_scale = 200 #
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
scheduler.set_timesteps(num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
# latents_x0 = latents - sigma * noise_pred
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
#ref image
with torch.no_grad():
ref_images = vae.decode((1 / 0.18215) * ref_latent).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = ref_loss(denoised_images,ref_images) * blue_loss_scale
# Occasionally print it out
# if i%10==0:
# print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
scheduler._step_index = scheduler._step_index - 1
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
#latents = scheduler.step(noise_pred, t, latents).pred_original_sample
image3 = latents_to_pil(latents)[0]
return (image1, 'Original Image'), (image2, 'Styled Image'), (image3, 'After Textual Inversion')
# Gradio App with num_inference_steps=10
title="Textual Inversion in Stable Diffusion"
description="<p style='text-align: center;'>Textual Inversion in Stable Diffusion.</b></p>"
gallery = gr.Gallery(label="Generated images", show_label=True, elem_id="gallery", columns=3).style(grid=[2], height="auto")
gr.Interface(fn=inference, inputs=["text",
gr.Radio([('<midjourney-style>',0), ('<hitokomoru-style>',1),('<birb-style>',2),
('<summie-style>',3),('<illustration-style>',4),('<m-geo>',5),('<buhu>',6)] , value = 0, label = 'Style')],
outputs = gallery, title = title,
examples = [['a girl playing in snow',0],
#['an oil painting of a goddess',6],
#['a rabbit on the moon', 5 ]
],
).launch(debug=True)