Mageia commited on
Commit
4dcdb35
1 Parent(s): bf6306d

copy: stepfun-ai/GOT_official_online_demo

Browse files
Files changed (2) hide show
  1. app.py +150 -0
  2. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import io
3
+ import os
4
+ import shutil
5
+ import time
6
+ import uuid
7
+ from pathlib import Path
8
+
9
+ import gradio as gr
10
+ from modelscope import AutoModel, AutoTokenizer
11
+
12
+ # import numpy as np
13
+ # import tempfile
14
+ # from PIL import Image
15
+
16
+
17
+ tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
18
+ model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map="cuda", use_safetensors=True)
19
+ model = model.eval().cuda()
20
+
21
+ UPLOAD_FOLDER = "./uploads"
22
+ RESULTS_FOLDER = "./results"
23
+
24
+ for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
25
+ if not os.path.exists(folder):
26
+ os.makedirs(folder)
27
+
28
+
29
+ def image_to_base64(image):
30
+ buffered = io.BytesIO()
31
+ image.save(buffered, format="PNG")
32
+ return base64.b64encode(buffered.getvalue()).decode()
33
+
34
+
35
+ def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
36
+ unique_id = str(uuid.uuid4())
37
+ image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
38
+ result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
39
+
40
+ shutil.copy(image, image_path)
41
+
42
+ try:
43
+ if got_mode == "plain texts OCR":
44
+ res = model.chat(tokenizer, image_path, ocr_type="ocr")
45
+ return res, None
46
+ elif got_mode == "format texts OCR":
47
+ res = model.chat(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
48
+ elif got_mode == "plain multi-crop OCR":
49
+ res = model.chat_crop(tokenizer, image_path, ocr_type="ocr")
50
+ return res, None
51
+ elif got_mode == "format multi-crop OCR":
52
+ res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
53
+ elif got_mode == "plain fine-grained OCR":
54
+ res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color)
55
+ return res, None
56
+ elif got_mode == "format fine-grained OCR":
57
+ res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
58
+
59
+ # res_markdown = f"$$ {res} $$"
60
+ res_markdown = res
61
+
62
+ if "format" in got_mode and os.path.exists(result_path):
63
+ with open(result_path, "r") as f:
64
+ html_content = f.read()
65
+ encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
66
+ iframe_src = f"data:text/html;base64,{encoded_html}"
67
+ iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
68
+ download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
69
+ return res_markdown, f"{download_link}<br>{iframe}"
70
+ else:
71
+ return res_markdown, None
72
+ except Exception as e:
73
+ return f"Error: {str(e)}", None
74
+ finally:
75
+ if os.path.exists(image_path):
76
+ os.remove(image_path)
77
+
78
+
79
+ def task_update(task):
80
+ if "fine-grained" in task:
81
+ return [
82
+ gr.update(visible=True),
83
+ gr.update(visible=False),
84
+ gr.update(visible=False),
85
+ ]
86
+ else:
87
+ return [
88
+ gr.update(visible=False),
89
+ gr.update(visible=False),
90
+ gr.update(visible=False),
91
+ ]
92
+
93
+
94
+ def fine_grained_update(task):
95
+ if task == "box":
96
+ return [
97
+ gr.update(visible=False, value=""),
98
+ gr.update(visible=True),
99
+ ]
100
+ elif task == "color":
101
+ return [
102
+ gr.update(visible=True),
103
+ gr.update(visible=False, value=""),
104
+ ]
105
+
106
+
107
+ def cleanup_old_files():
108
+ current_time = time.time()
109
+ for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
110
+ for file_path in Path(folder).glob("*"):
111
+ if current_time - file_path.stat().st_mtime > 3600: # 1 hour
112
+ file_path.unlink()
113
+
114
+
115
+ with gr.Blocks() as demo:
116
+ with gr.Row():
117
+ with gr.Column():
118
+ image_input = gr.Image(type="filepath", label="上传图片")
119
+ task_dropdown = gr.Dropdown(
120
+ choices=[
121
+ "plain texts OCR",
122
+ "format texts OCR",
123
+ "plain multi-crop OCR",
124
+ "format multi-crop OCR",
125
+ "plain fine-grained OCR",
126
+ "format fine-grained OCR",
127
+ ],
128
+ label="选择GOT模式",
129
+ value="plain texts OCR",
130
+ )
131
+ fine_grained_dropdown = gr.Dropdown(choices=["box", "color"], label="fine-grained type", visible=False)
132
+ color_dropdown = gr.Dropdown(choices=["red", "green", "blue"], label="color list", visible=False)
133
+ box_input = gr.Textbox(label="input box: [x1,y1,x2,y2]", placeholder="e.g., [0,0,100,100]", visible=False)
134
+ submit_button = gr.Button("Submit")
135
+
136
+ with gr.Column():
137
+ ocr_result = gr.Textbox(label="GOT output")
138
+
139
+ with gr.Column():
140
+ gr.Markdown("**如果选择带格式的模式,mathpix结果将自动呈现如下:**")
141
+ html_result = gr.HTML(label="rendered html", show_label=True)
142
+
143
+ task_dropdown.change(task_update, inputs=[task_dropdown], outputs=[fine_grained_dropdown, color_dropdown, box_input])
144
+ fine_grained_dropdown.change(fine_grained_update, inputs=[fine_grained_dropdown], outputs=[color_dropdown, box_input])
145
+
146
+ submit_button.click(run_GOT, inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], outputs=[ocr_result, html_result])
147
+
148
+ if __name__ == "__main__":
149
+ cleanup_old_files()
150
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ verovio
2
+ gradio
3
+ numpy
4
+ modelscope
5
+ Pillow
6
+ tiktoken
7
+ transformers
8
+ torch
9
+ torchvision
10
+ accelerate