Spaces:
Running
Running
fix: process pdf once
Browse files
app.py
CHANGED
@@ -1,99 +1,39 @@
|
|
1 |
-
import base64
|
2 |
-
import os
|
3 |
-
import uuid
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
8 |
-
from transformers import
|
9 |
|
10 |
-
|
11 |
-
model_name = "stepfun-ai/GOT-OCR2_0"
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
15 |
-
|
16 |
-
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map="cuda", use_safetensors=True)
|
17 |
model = model.eval().to(device)
|
18 |
-
model.config.pad_token_id = tokenizer.eos_token_id
|
19 |
-
|
20 |
-
UPLOAD_FOLDER = "./uploads"
|
21 |
-
|
22 |
-
# 确保上传文件夹存在
|
23 |
-
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
24 |
|
25 |
|
26 |
@spaces.GPU()
|
27 |
-
def
|
28 |
-
# 执行OCR
|
29 |
-
try:
|
30 |
-
if got_mode == "plain texts OCR":
|
31 |
-
res = model.chat(tokenizer, image_path, ocr_type="ocr")
|
32 |
-
return res, None
|
33 |
-
elif got_mode == "format texts OCR":
|
34 |
-
result_path = f"{os.path.splitext(image_path)[0]}_result.html"
|
35 |
-
res = model.chat(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
|
36 |
-
elif got_mode == "plain multi-crop OCR":
|
37 |
-
res = model.chat_crop(tokenizer, image_path, ocr_type="ocr")
|
38 |
-
return res, None
|
39 |
-
elif got_mode == "format multi-crop OCR":
|
40 |
-
result_path = f"{os.path.splitext(image_path)[0]}_result.html"
|
41 |
-
res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
|
42 |
-
elif got_mode == "plain fine-grained OCR":
|
43 |
-
res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color)
|
44 |
-
return res, None
|
45 |
-
elif got_mode == "format fine-grained OCR":
|
46 |
-
result_path = f"{os.path.splitext(image_path)[0]}_result.html"
|
47 |
-
res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
|
48 |
-
|
49 |
-
# 处理格式化结果
|
50 |
-
if "format" in got_mode and os.path.exists(result_path):
|
51 |
-
with open(result_path, "r") as f:
|
52 |
-
html_content = f.read()
|
53 |
-
encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
|
54 |
-
return res, encoded_html
|
55 |
-
else:
|
56 |
-
return res, None
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return f"错误: {str(e)}", None
|
60 |
-
|
61 |
-
|
62 |
-
def perform_ocr(image):
|
63 |
if image is None:
|
64 |
-
return "
|
65 |
-
|
66 |
-
# 保存上传的图片
|
67 |
-
image_path = os.path.join(UPLOAD_FOLDER, f"{uuid.uuid4()}.png")
|
68 |
-
image.save(image_path)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
if html_content:
|
77 |
-
encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
|
78 |
-
iframe_src = f"data:text/html;base64,{encoded_html}"
|
79 |
-
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
|
80 |
-
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result.html">下载完整结果</a>'
|
81 |
-
return gr.HTML(f"{download_link}<br>{iframe}")
|
82 |
-
else:
|
83 |
-
return gr.Markdown(result)
|
84 |
|
85 |
|
86 |
-
# 创建 Gradio 界面
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.Markdown("# OCR 图像识别")
|
|
|
89 |
with gr.Row():
|
90 |
-
image_input = gr.Image(type="
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
|
96 |
-
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
from transformers import AutoModel, AutoTokenizer
|
5 |
|
6 |
+
model_name = "ucaslcl/GOT-OCR2_0"
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, device_map=device)
|
|
|
11 |
model = model.eval().to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
@spaces.GPU()
|
15 |
+
def ocr_process(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
if image is None:
|
17 |
+
return "错误:未提供图片"
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
try:
|
20 |
+
res = model.chat(tokenizer, image, ocr_type="ocr")
|
21 |
+
return res
|
22 |
+
except Exception as e:
|
23 |
+
return f"错误: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
|
|
26 |
with gr.Blocks() as demo:
|
27 |
gr.Markdown("# OCR 图像识别")
|
28 |
+
|
29 |
with gr.Row():
|
30 |
+
image_input = gr.Image(type="filepath", label="上传图片")
|
31 |
+
|
32 |
+
submit_button = gr.Button("开始OCR识别")
|
33 |
+
|
34 |
+
output_text = gr.Textbox(label="识别结果")
|
35 |
|
36 |
+
submit_button.click(ocr_process, inputs=[image_input], outputs=[output_text])
|
37 |
|
38 |
if __name__ == "__main__":
|
39 |
demo.launch()
|