import os import shutil import uuid import fitz # PyMuPDF import gradio as gr import torch from PIL import Image, ImageEnhance from transformers import AutoConfig, AutoModel, AutoTokenizer from got_ocr import got_ocr # 初始化模型和分词器 # model_name = "stepfun-ai/GOT-OCR2_0" model_name = "ucaslcl/GOT-OCR2_0" device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map="cuda", use_safetensors=True) model = model.eval().to(device) model.config.pad_token_id = tokenizer.eos_token_id UPLOAD_FOLDER = "./uploads" RESULTS_FOLDER = "./results" # 确保必要的文件夹存在 os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(RESULTS_FOLDER, exist_ok=True) def pdf_to_images(pdf_path): images = [] pdf_document = fitz.open(pdf_path) for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) # 进一步增加分辨率和缩放比例 zoom = 10 # 增加缩放比例到4 mat = fitz.Matrix(zoom, zoom) pix = page.get_pixmap(matrix=mat, alpha=False) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # 增对比度 enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(1.5) # 增加50%的对比度 images.append(img) pdf_document.close() return images def process_pdf(pdf_file): if pdf_file is None: return None temp_pdf_path = os.path.join(UPLOAD_FOLDER, f"{uuid.uuid4()}.pdf") # 使用 shutil 复制上传的件到临时位置 shutil.copy(pdf_file.name, temp_pdf_path) images = pdf_to_images(temp_pdf_path) os.remove(temp_pdf_path) # 将图像保存为临时文件并返回文件路径列表 image_paths = [] for i, img in enumerate(images): img_path = os.path.join(RESULTS_FOLDER, f"page_{i+1}.png") img.save(img_path, "PNG") image_paths.append(img_path) return image_paths def on_image_select(evt: gr.SelectData): if evt.index is not None: return evt.index return None # 更新perform_ocr函数的输入参数 def perform_ocr(selected_index, image_gallery, got_mode, fine_grained_type, color, box): if selected_index is None or len(image_gallery) == 0: return "请先选择一张图片" selected_image = image_gallery[selected_index][0] # 根据选择的任务和参数调用GOT OCR ocr_color = color if fine_grained_type == "color" else "" ocr_box = box if fine_grained_type == "box" else "" result, html_content = got_ocr( model, tokenizer, selected_image, got_mode=got_mode, fine_grained_mode=fine_grained_type, ocr_color=ocr_color, ocr_box=ocr_box, ) if html_content: iframe_src = f"data:text/html;base64,{html_content}" iframe = f'' download_link = f'下载完整结果' return gr.Markdown(f"{download_link}\n\n{iframe}") else: return gr.Markdown(result) def task_update(task): if "fine-grained" in task: return [gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)] def fine_grained_update(fine_grained_type): if fine_grained_type == "color": return [gr.update(visible=True), gr.update(visible=False)] elif fine_grained_type == "box": return [gr.update(visible=False), gr.update(visible=True)] else: return [gr.update(visible=False), gr.update(visible=False)] with gr.Blocks() as demo: pdf_input = gr.File(label="上传PDF文件") image_gallery = gr.Gallery( label="PDF页面预览", columns=3, height=600, object_fit="contain", preview=True, ) selected_index = gr.State(None) pdf_input.upload(fn=process_pdf, inputs=pdf_input, outputs=image_gallery) image_gallery.select(fn=on_image_select, inputs=[], outputs=selected_index) #################### task_dropdown = gr.Dropdown( choices=["plain texts OCR", "format texts OCR", "plain multi-crop OCR", "format multi-crop OCR", "plain fine-grained OCR", "format fine-grained OCR"], label="选择GOT模式", value="format texts OCR", ) fine_grained_dropdown = gr.Dropdown(choices=["box", "color"], label="fine-grained类型", visible=False) color_dropdown = gr.Dropdown(choices=["red", "green", "blue"], label="颜色列表", visible=False) box_input = gr.Textbox(label="输入框: [x1,y1,x2,y2]", placeholder="例如: [0,0,100,100]", visible=False) ocr_button = gr.Button("开始OCR识别") ocr_result = gr.HTML(label="OCR结果") # 将Textbox更改为HTML组件 task_dropdown.change(task_update, inputs=[task_dropdown], outputs=[fine_grained_dropdown, color_dropdown, box_input]) fine_grained_dropdown.change(fine_grained_update, inputs=[fine_grained_dropdown], outputs=[color_dropdown, box_input]) # 更新ocr_button的click事件,传递所有必要的参数 ocr_button.click( fn=perform_ocr, inputs=[selected_index, image_gallery, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], outputs=ocr_result, ) if __name__ == "__main__": demo.launch()