Spaces:
Sleeping
Sleeping
jadehardouin
commited on
Commit
•
373e8e8
1
Parent(s):
14ace35
Update contribution_example.py
Browse files- contribution_example.py +9 -10
contribution_example.py
CHANGED
@@ -53,16 +53,6 @@ class NewModel(BaseTCOModel):
|
|
53 |
super().__init__()
|
54 |
|
55 |
def render(self):
|
56 |
-
#Create update functions that adjust the values of your cost/token depending on user's choices
|
57 |
-
def on_model_parameter_change(model_parameter):
|
58 |
-
if model_parameter == "Option 1":
|
59 |
-
input_tokens_cost_per_token = 0.1
|
60 |
-
output_tokens_cost_per_token = 0.2
|
61 |
-
else:
|
62 |
-
input_tokens_cost_per_token = 0.2
|
63 |
-
output_tokens_cost_per_token = 0.4
|
64 |
-
return input_tokens_cost_per_token, output_tokens_cost_per_token
|
65 |
-
|
66 |
#Create as many Gradio components as you want to provide information or customization to the user
|
67 |
#Put all their visibility to False
|
68 |
#Don't forget to put the interactive parameter of the component to False if the value is fixed
|
@@ -81,6 +71,15 @@ class NewModel(BaseTCOModel):
|
|
81 |
label="($) Price/1K output prompt tokens",
|
82 |
interactive=False
|
83 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
#Trigger the values modification linked to the parameter change
|
86 |
self.model_parameter.change(on_model_parameter_change, inputs=self.model_parameter, outputs=[self.input_cost_per_token, self.output_cost_per_token])
|
|
|
53 |
super().__init__()
|
54 |
|
55 |
def render(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
#Create as many Gradio components as you want to provide information or customization to the user
|
57 |
#Put all their visibility to False
|
58 |
#Don't forget to put the interactive parameter of the component to False if the value is fixed
|
|
|
71 |
label="($) Price/1K output prompt tokens",
|
72 |
interactive=False
|
73 |
)
|
74 |
+
#Create update functions that adjust the values of your cost/token depending on user's choices
|
75 |
+
def on_model_parameter_change(model_parameter):
|
76 |
+
if model_parameter == "Option 1":
|
77 |
+
input_tokens_cost_per_token = 0.1
|
78 |
+
output_tokens_cost_per_token = 0.2
|
79 |
+
else:
|
80 |
+
input_tokens_cost_per_token = 0.2
|
81 |
+
output_tokens_cost_per_token = 0.4
|
82 |
+
return input_tokens_cost_per_token, output_tokens_cost_per_token
|
83 |
|
84 |
#Trigger the values modification linked to the parameter change
|
85 |
self.model_parameter.change(on_model_parameter_change, inputs=self.model_parameter, outputs=[self.input_cost_per_token, self.output_cost_per_token])
|